\(\dfrac{9x^2y^2+3x^2}{12xy^5+4xy^3}=\dfrac{3x^2\left(3y^2+1\right)}{4xy^3\left(3y^2+1\right)}=\dfrac{3x}{4y^3}\)
\(\dfrac{9x^2y^2+3x^2}{12xy^5+4xy^3}=\dfrac{3x^2\left(3y^2+1\right)}{4xy^3\left(3y^2+1\right)}=\dfrac{3x}{4y^3}\)
Phân tích mỗi đa thức sau thành nhân tử
a)x^3-2x^2y+xy^2+xy
b)x^3+4x^2y+4xy^2-9x
c)x^3-y^3+x-y
d)4x^2-4xy+2x-y+y^2
e)9x^2-3x+2y-4y^2
f)3x^2-6xy+3y^2-5x+5y
Rút gọn phân thức.
y(2x-x)^2 trên x(2y+y^2) b)(2x+3)(3x-5) trên 25-9x^2 c) 2x^5y^3 trên 3x^3y^2. D) x^2+2x+1 trên x^2-1
Rút gọn đơn thức
x(3x-1)+(9x-5)(x-2)
Viết các biểu thức sau dưới dạng bình phương của một tổng hoặc một hiệu:
a)4x²+12xy+9y²
b)y²+1-2y
Giúp mình với mình cần gấp ạ!
Quy đồng mẫu thức các phân thức sau
a) 25/14x^2y và 14/21xy^5
b)11/102x^4y và 3/34xy^3
c)3x+1/12xy^4 và y-2/9x^2y^3
Viết các biểu thức sau dưới dạng bình phương của 1 tổng , 1 hiệu :
a) 5x^2 + y^2 + z^2 + 4xy - 2xz
b) 9x^2 + 25 - 12xy + 2y^2 - 10y
c) 13x^2 + 4x - 12xy + 4y^2 + 1
d) x^2 + 4y^2 + 4x - 4y +5
Rút gọn các biểu thức sau:
a) ( x + y)2 + (x - y)2 b) ( x + y)2 + (x - y)2 + 2( x+ y) ( x- y)
c) (2+3y)2-(2x-3y)2-12xy d) ( 3x + 1)2 - (3x - 1)2
e)(x+1)(x2-x+1)-(x-1)(x2+x+1)
Rút gọn các biểu thức sau:
a) ( x + y)2 + (x - y)2 b) ( x + y)2 + (x - y)2 + 2( x+ y) ( x- y)
c) (2+3y)2-(2x-3y)2-12xy d) ( 3x + 1)2 - (3x - 1)2
e)(x+1)(x2-x+1)-(x-1)(x2+x+1)
Bài 1:Rút gọn
a) -2x(-3X+2)-(x+2)^2
b)(x+2)(x^2-2x+4)-2(x+1)(1-x)
c)(2x-1)^2-2(4x^2-1)+(2x+1)^2
d)x^2-3x+xy-3y
Bài 2:Phân tích đa thức thành nhân tử
a)4x^ 2-4xy+y^2
b)9x^3-9x^2y-4x+4y
c)x^3+2+3(x^3-2)
Bài 3:Tìm x biết:2(x-2)=x^2-4x+4
giúp mk với,mk đang cần gấp!
BÀI 6 :rút gọn phân thức
\(\dfrac{x^3+3x^3+3x+1}{x^2+x}\)
b)\(\dfrac{x^3-3x^2+3x-1}{2x-2}\)
c)\(\dfrac{x^2+4x+4}{2x+4}\)
d)\(\dfrac{(x-1)(-x-2)}{x+2}\)
e)\(\dfrac{x^2-y^2}{x+y}\)
f)\(\dfrac{3x^2+4xy^2}{6x+8y}\)
g)\(\dfrac{-3x^2-6x}{4-x^2}\)
BÀI 7 :quy đồng mẫu thức các phân thức
\(\dfrac{2}{5x^3y^2}và \dfrac{3}{4xy}\)
b)\(\dfrac{x}{x^2-2xy+y^2} và \dfrac{x}{x^2-xy}\)
c)\(\dfrac{1}{x+2};\dfrac{2}{2x+4}và \dfrac{3}{3x+6}\)
d)\(\dfrac{1}{x+3};\dfrac{2}{2x-6}và \dfrac{3}{3x-9}\)