\(\dfrac{-351}{702}=\dfrac{-1}{2}\)
\(-\dfrac{18181818}{19191919}=\dfrac{-18}{19}\)
\(\dfrac{-583}{352}=-\dfrac{53}{32}\)
\(\dfrac{-351}{702}=\dfrac{-1}{2}\)
\(-\dfrac{18181818}{19191919}=\dfrac{-18}{19}\)
\(\dfrac{-583}{352}=-\dfrac{53}{32}\)
Bài 4: Rút gọn các phân số:
a)\(\dfrac{\left(-2\right).7}{7.5}\)=
b)\(\dfrac{\left(-21\right).\left(-5\right)}{15.\left(-7\right)}\)=
c)\(\dfrac{72.75}{125.108}\)=
d)\(\dfrac{32.9.11}{12.24.22}\)=
rút gọn các phân số sau
\(\dfrac{2.\left(-13\right).9.10}{\left(-3\right).4.\left(-5\right).26}\)
\(\dfrac{2^2.2^3.5^7}{2^3.3^4.5^6}\)
Rút gọn các phân số sau:(cho mik xin cách giải ak)
a) \(\dfrac{\left(-14\right).15}{21.\left(-10\right)}\)
b)\(\dfrac{5.7-7.9}{7.2+6.7}\)
c)\(\dfrac{\left(-7\right).3+2.\left(-14\right)}{\left(-5\right).7-2.7}\)
d)\(\dfrac{3^9.3^{20}.2^8}{3^{24}.243.2^6}\)
e)\(\dfrac{2^{15}.5^3.2^6.3^4}{8.2^{18}.81.5}\)
f)\(\dfrac{24.315+3.561.8+4.124.6}{1+3+5+...+97+99-500}\)
rút gọn biểu thức : A = \(\left(1+\dfrac{1}{3}\right).\left(1+\dfrac{1}{8}\right).\left(1+\dfrac{1}{15}\right)......\left(1+\dfrac{1}{2499}\right)\)
Rút gọn:
\(A=\left(1-\dfrac{1}{6}\right)+\left(1-\dfrac{2}{7}\right)+...+\left(1-\dfrac{88}{93}\right)\)
rút gọn phân số:
\(a.\dfrac{-315}{540}\)
\(b.\dfrac{25.13}{26.35}\)
\(c.\dfrac{3.13-13.18}{15.40-80}\)
\(d.\dfrac{-1997.1996+1}{\text{(}-1995\text{)}.\left(-1997\right)+1996}\)
Rút gọn phân số
a)- 351/702
b)- 3112/-9336
c)582/- 352
d)1111/5555
e)115.(-30).49/-60.98.230
f)153.24-153.11/7-160
g)2^50.3^14.7^28/3^13.2^51.7^30
Tính hợp lý
\(A = \left(1-\dfrac{1}{25}\right)\left(1-\dfrac{1}{36}\right)\left(1-\dfrac{1}{49}\right)...\left(1-\dfrac{1}{10000}\right)\) B= \(\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{6}\right)\left(1-\dfrac{1}{10}\right)...\left(1-\dfrac{1}{50.101}\right)\)
CHo `M` `=` \(\dfrac{\left(\dfrac{3}{1\cdot4}+\dfrac{3}{2\cdot6}+\dfrac{3}{3\cdot8}+\dfrac{3}{4\cdot10}+...+\dfrac{3}{49\cdot100}\right)}{\left(1-\dfrac{1}{4}\right)\left(1-\dfrac{1}{5}\right)\left(1-\dfrac{1}{6}\right)\cdot\cdot\cdot\left(1-\dfrac{1}{100}\right)}\)
Chứng `M` có giá trị là 1 số nguyên
Hép - mi - pờ - li