\(A=\sqrt{\sqrt{7}-\sqrt{3}}-\sqrt{\sqrt{7}+\sqrt{3}}\)
=>\(A^2=\sqrt{7}-\sqrt{3}+\sqrt{7}+\sqrt{3}-2\sqrt{4}\)
=>A^2=2căn 7-4
=>A=2căn 7-4
=>\(M=\dfrac{2\left(\sqrt{7}-2\right)}{\sqrt{7}-2}=2\)
\(A=\sqrt{\sqrt{7}-\sqrt{3}}-\sqrt{\sqrt{7}+\sqrt{3}}\)
=>\(A^2=\sqrt{7}-\sqrt{3}+\sqrt{7}+\sqrt{3}-2\sqrt{4}\)
=>A^2=2căn 7-4
=>A=2căn 7-4
=>\(M=\dfrac{2\left(\sqrt{7}-2\right)}{\sqrt{7}-2}=2\)
Rút gọn:
a) \(\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+\sqrt{48}}}}\)
b) \(\dfrac{\sqrt{3}-\sqrt{5+\sqrt{24}}+\sqrt{\sqrt{72}+11}}{\sqrt{6+\sqrt{20}}+\sqrt{2}-\sqrt{7+\sqrt{40}}}\)
Rút gọn biểu thức:
\(\frac{\sqrt{3}+\sqrt{7}}{\sqrt{3}-\sqrt{7}}+\frac{\sqrt{3}-\sqrt{7}}{\sqrt{3}+\sqrt{7}}\)
Rút gọn 1 / sqrt (2) - sqrt (3) -sqrt(3)-sqrt(5)+1/sqrt(5)-sqrt(7)
Rút gọn
1) \(B=\sqrt{\sqrt{7}+6+\sqrt{13-2\sqrt{64-6\sqrt{7}}}}\)
2) \(C=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
3) \(D=\frac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)
rút gọn biểu thức \(A=\frac{\sqrt{20}+2}{\sqrt{3}-1}-\frac{\sqrt{112}+4}{\sqrt{5}+1}+\sqrt{5}\left(\sqrt{7}-\sqrt{3}\right)\)
Rút gọn:
\(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}\)
rút gọn A= \(\sqrt{4+\sqrt{7}}\)-\(\sqrt{4-\sqrt{7}}\)
Rút gọn biểu thức
A = \(\frac{\sqrt{3}+\sqrt{11+6\sqrt{2}}-\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{6+2\sqrt{5}}-\sqrt{7+2\sqrt{10}}}\)
B = \(\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)
C = \(\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\)
D = \(\sqrt{28+6\sqrt{3}}-\sqrt{28-6\sqrt{3}}\)
E = \(6x+\sqrt{9x^2-12x+4}\)
F = \(5x-\sqrt{x^2+4x+4}\)
cho biểu thức A=\(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{2\sqrt{x}+3}{\sqrt{x}-3}\)
rút gọn A và tìm giá trị lớn nhất của A