a) \(\sqrt{3a^3}\cdot\sqrt{12a}=\sqrt{3a^3\cdot12a}=\sqrt{36a^4}=6a^2\)
b) \(\sqrt{2a\cdot32ab^2}=\sqrt{64a^2b^2}=8ab\)
a) \(\sqrt{3a^3}\cdot\sqrt{12a}=\sqrt{3a^3\cdot12a}=\sqrt{36a^4}=6a^2\)
b) \(\sqrt{2a\cdot32ab^2}=\sqrt{64a^2b^2}=8ab\)
tính:
\(\sqrt{20}\).\(\sqrt{72}\).\(\sqrt{4,9}\)=?
bài 2:Rút gọn biểu thức sau ( với a và b không âm)
a) \(\sqrt{3a^3}\).\(\sqrt{12a}\)=?
b) \(\sqrt{2a.32ab^2}\)=?
Rút gọn cái biểu thức sau
1) 5√4a^6 -3a^3 với a<0
2)√9a^4 +3a^2
3) √x^2-10x+25 phần x-5
Rút gọn các biểu thức sau
a, \(\sqrt{1-4a+4a^2-2a}\)
b,\(x^2+\sqrt{x^4-8x^2+16}\)
hãy rút gọn các biểu thức sau
\(a.5\sqrt{4a^6}-3a^3v\text{ới}a< 0\)
b.\(\sqrt{9a^4}+3a^2\)
c.\(\frac{\sqrt{x^2-10x+25}}{x-5}\)
Khai triển và rút gọn các biểu thức (với x và y không âm)
a) (4\(\sqrt{x}\)-\(\sqrt{2x}\))(\(\sqrt{x}\)-\(\sqrt{2x}\))
b) (2\(\sqrt{x}\)+\(\sqrt{y}\))(3\(\sqrt{x}\)-2\(\sqrt{y}\))
bài 1: cho biểu thức: P=\(\frac{3a+\sqrt{9a}-3}{a+\sqrt{a}-2}-\frac{\sqrt{a}+1}{\sqrt{a}+2}+\frac{\sqrt{a}-2}{1-\sqrt{a}}\)
a) Rút gọn P
b) Tìm các giá trị nguyên của a để P nguyên
bài 2: cho biểu thức: P=\(\frac{\sqrt{a+4\sqrt{a-4}}+\sqrt{a-4\sqrt{a-4}}}{\sqrt{1-\frac{8}{a}+\frac{16}{a^2}}}\)
a) Rút gọn P
b) Tìm các giá trị nguyên của a (a>8) để P nguyên
Rút gọn các biểu thức sau:
a) \(\frac{x^2-3}{x+\sqrt{3}}\)
b) \(\frac{1-â\sqrt{â}}{1-\sqrt{â}}\) với a\(\ge\) 0 và a\(\ne\) 1
1/ Cho các số thực dương a,b với a khác b. Chứng minh đẳng thức sau:
\(\frac{\frac{\left(a-b\right)^3}{\left(\sqrt{a}-\sqrt{b}\right)^3}-b\sqrt{b}+2a\sqrt{a}}{a\sqrt{a}-b\sqrt{b}}+\frac{3a+3\sqrt{ab}}{b-a}=0\)
2/ Cho hai số thực a,b sao cho \(\left|a\right|\ne\left|b\right|\) và ab \(\ne\) 0 thỏa mãn điều kiện:
\(\frac{a-b}{a^2+ab}+\frac{a+b}{a^2-ab}=\frac{3a-b}{a^2-b^2}\). Tính giá trị của biểu thức \(P=\frac{a^3+2a^2b+3b^3}{2a^3+ab^2+b^3}\)
Rút gọn các biểu thức sau (gia thiết các biểu thức chữ đều có nghĩa)
a) \(\sqrt{8\left(\sqrt{2}-\sqrt{3}\right)^2}\)
b) ab\(\sqrt{1+\frac{1}{a^2b^2}}\)
c) \(\sqrt{\frac{a}{b^3}+\frac{a}{b^4}}\)
d) \(\frac{a+\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\)