a: \(Q=\left(3x^2-5xy-4y^2\right)\cdot\left(2x^2+y^2\right)+\left(2x^4y^2+x^3y^3+x^2y^4\right):\left(\dfrac{1}{5}xy\right)\)
\(=6x^4+3x^2y^2-10x^3y-5xy^3-8x^2y^2-4y^4+\dfrac{2x^4y^2}{\dfrac{1}{5}xy}+\dfrac{x^3y^3}{\dfrac{1}{5}xy}+\dfrac{x^2y^4}{\dfrac{1}{5}xy}\)
\(=6x^4-5x^2y^2-10x^3y-5xy^3-4y^4+10x^3y+5x^2y^2+5xy^3\)
\(=6x^4-4y^4\)
b: \(P=\left(x-3\right)\left(x^2+3x+9\right)+\left(2x-1\right)^3-x\left(3x-1\right)\left(3x+1\right)+3\left(2x+3\right)^2\)
\(=x^3-27+8x^3-12x^2+6x-1-x\left(9x^2-1\right)+3\left(4x^2+12x+9\right)\)
\(=9x^3-12x^2+6x-28-9x^3+x+3\left(4x^2+12x+9\right)\)
\(=-12x^2+7x-28+12x^2+36x+27\)
=43x-1