Đặt \(x=\sqrt[3]{\sqrt{5}+2}-\sqrt[3]{\sqrt{5}-2}.\)
\(\Rightarrow x^3=\sqrt{5}+2-3\sqrt[3]{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}\left(\sqrt[3]{\sqrt{5}+2}-\sqrt[3]{\sqrt{5}-2}\right)-\sqrt{5}+2\)
\(=4-3\sqrt[3]{5-4}.x\)( Vì \(x=\sqrt[3]{\sqrt{5}+2}-\sqrt[3]{\sqrt{5}-2}\))
\(=4-3x\)
\(\Rightarrow x^3+3x-4=0\Leftrightarrow\left(x^3-1\right)+\left(3x-3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x+4\right)=0\Leftrightarrow x-1=0\)( Vì \(x^2+x+4=\left(x+\frac{1}{2}\right)^2+\frac{15}{4}>0\))
\(\Leftrightarrow x=1\)hay \(\sqrt[3]{\sqrt{5}+2}-\sqrt[3]{\sqrt{5}-2}=1\)