Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Mèo Dương

 Rút gọn biểu thức sau: Q=(\(\dfrac{1}{2\sqrt{x}+1}+\dfrac{1}{2\sqrt{x}-1}\)):\(\dfrac{1}{1-4x}\) với x≥0,x≠\(\dfrac{1}{4}\)

giúp tui giải bài này vs khocroikhocroitui c.ơn 

Nguyễn Việt Lâm
21 tháng 1 lúc 19:32

\(Q=\left(\dfrac{1}{2\sqrt{x}+1}+\dfrac{1}{2\sqrt{x}-1}\right):\dfrac{1}{1-4x}\)

\(=\left(\dfrac{2\sqrt{x}-1}{\left(2\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}+\dfrac{2\sqrt{x}+1}{\left(2\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}\right).\left(1-4x\right)\)

\(=\left(\dfrac{2\sqrt{x}-1+2\sqrt{x}+1}{4x-1}\right)\left(1-4x\right)\)

\(=\dfrac{-4\sqrt{x}.\left(4x-1\right)}{4x-1}=-4\sqrt{x}\)

Toru
21 tháng 1 lúc 19:33

\(Q=\left(\dfrac{1}{2\sqrt{x}+1}+\dfrac{1}{2\sqrt{x}-1}\right):\dfrac{1}{1-4x}\left(dkxd:x\ge0;x\ne\dfrac{1}{4}\right)\)

\(=\left[\dfrac{2\sqrt{x}-1}{\left(2\sqrt{x}-1\right)\left(2\sqrt{x}+1\right)}+\dfrac{2\sqrt{x}+1}{\left(2\sqrt{x}-1\right)\left(2\sqrt{x}+1\right)}\right]\cdot\left(1-4x\right)\)

\(=\dfrac{2\sqrt{x}-1+2\sqrt{x}+1}{4x-1}\cdot\left[-\left(4x-1\right)\right]\)

\(=4\sqrt{x}\cdot\left(-1\right)\)

\(=-4\sqrt{x}\)


Các câu hỏi tương tự
Tsumetai Kodoku
Xem chi tiết
Cá Lệ Kiều
Xem chi tiết
amu lina
Xem chi tiết
Cá Lệ Kiều
Xem chi tiết
Lê Quỳnh Chi Phạm
Xem chi tiết
Quỳnh 9/2 Mai
Xem chi tiết
Xem chi tiết
⚚TᕼIêᑎ_ᒪý⁀ᶜᵘᵗᵉ
Xem chi tiết
Tuấn Nguyễn
Xem chi tiết