Với `x > 0,x \ne 1` có:
`M=(\sqrt{x}/[\sqrt{x}-1]-1/[x-\sqrt{x}]):(1/[\sqrt{x}+1]+2/[x-1])`
`M=[x-1]/[\sqrt{x}(\sqrt{x}-1)]:[\sqrt{x}-1+2]/[(\sqrt{x}-1)(\sqrt{x}+1)]`
`M=[(\sqrt{x}-1)(\sqrt{x}+1)]/[\sqrt{x}(\sqrt{x}-1)].[(\sqrt{x}-1)(\sqrt{x}+1)]/[\sqrt{x}+1]`
`M=[(\sqrt{x}+1)(\sqrt{x}-1)]/\sqrt{x}=[x-1]/\sqrt{x}`