Bạn tham khảo lời giải tại đây:
Câu hỏi của khanhhuyen6a5 - Toán lớp 9 | Học trực tuyến
Bạn tham khảo lời giải tại đây:
Câu hỏi của khanhhuyen6a5 - Toán lớp 9 | Học trực tuyến
rút gọn biểu thức: P=\(\frac{3+\sqrt{5}}{\sqrt{10}+\sqrt{3+\sqrt{5}}}-\frac{3-\sqrt{5}}{\sqrt{10}+\sqrt{3-\sqrt{5}}}\)
Rút gọn các biểu thức
a, \(\frac{\sqrt{15}-\sqrt{6}}{\sqrt{35}-\sqrt{14}}\)
b, \(\frac{2\sqrt{15}-2\sqrt{10}+\sqrt{6}-3}{2\sqrt{5}-2\sqrt{10}-\sqrt{3}+\sqrt{6}}\)
c, \(\frac{x+\sqrt{xy}}{y+\sqrt{xy}}\)
d, \(\frac{\sqrt{a}+a\sqrt{b}-\sqrt{b}-b\sqrt{a}}{ab-1}\)
Bài 1 Rút gọn các biểu thức
a, \(-\sqrt{36b}-\frac{1}{3}\sqrt{54b}+\frac{1}{5}\sqrt{150b}\) với b>0
b,\(\frac{3+\sqrt{4}}{\sqrt{6}+\sqrt{2}-\sqrt{5}}\)
c,\(\sqrt{\frac{5+2\sqrt{6}}{5-2\sqrt{6}}}+\sqrt{\frac{5-2\sqrt{6}}{5+2\sqrt{6}}}\)
d, A=\(\sqrt{\sqrt{5}-\sqrt{\sqrt{3}-\sqrt{29-6\sqrt{20}}}}\)
e, B=\(\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}\)
cho biểu thức \(P=\left(\frac{1}{1-\sqrt{a}}-\frac{1}{\sqrt{a}}\right):\left(\frac{2a+\sqrt{a}-1}{1-a}+\frac{2a\sqrt{a}+a-\sqrt{a}}{1+a\sqrt{a}}\right)\)
a. rút gọn P KQ=\(\frac{1-\sqrt{a}+a}{\sqrt{a}}\)
b. tính P khi \(a=\frac{\sqrt{3+\sqrt{5}}\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{10}+\sqrt{2}\right)\left(3-\sqrt{5}\right)}{2\sqrt{3+\sqrt{5-\sqrt{13-\sqrt{48}}}}}+1\) KQ =7/3
c. tìm x để P>x
lm hooj t câu c vs câu a,b, t lm hết r
Rút gọn :
\(A=\frac{\sqrt{3}+\sqrt{11+6\sqrt{2}}-\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{6+2\sqrt{5}}-\sqrt{7+2\sqrt{10}}}\)
\(B=\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{5}}}}\)
\(C=\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
\(D=\sqrt{3-\sqrt{5}}\left(\sqrt{10}-\sqrt{2}\right)\left(3+\sqrt{5}\right)\)
\(E=\sqrt{15-6\sqrt{6}}+\sqrt{35-12\sqrt{6}}\)
rút gọn biểu thức: a)\(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)
b)\(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
c)\(\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}-2\sqrt{3-\sqrt{5}}\)
Rút gọn :
\(B=\frac{6-6\sqrt{3}}{1-\sqrt{3}}+\frac{3\sqrt{3}+3}{\sqrt{3}+1}\)
\(C=\frac{3+\sqrt{3}}{\sqrt{3}}+\frac{\sqrt{6}-\sqrt{3}}{1-\sqrt{2}}\)
\(D=\frac{\sqrt{10}-\sqrt{2}}{\sqrt{5}-1}+\frac{2-\sqrt{2}}{\sqrt{2}-1}\)
\(E=\frac{\sqrt{15}-\sqrt{12}}{\sqrt{5}-2}+\frac{1}{2-\sqrt{3}}\)
\(F=\left(\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}\right)\left(\sqrt{6}+11\right)\)
rút gọn biểu thức
a)(\(\sqrt{10}+\sqrt{2}\))\(\left(6-2\sqrt{5}\right)\sqrt{3+\sqrt{5}}\)
Rút gọn biểu thức
a)\(\frac{a-1}{\sqrt[3]{a^2}+\sqrt[3]{a}+1}\)\
b)\(\left(12\sqrt[3]{2}+\sqrt[3]{16}-2\sqrt[3]{2}\right)\left(5\sqrt[3]{4}-3\sqrt[3]{\frac{1}{2}}\right)\)