Với x khác 0 ; x khác 6 ; -6
\(A=\left(\dfrac{\left(6x+1\right)\left(x+6\right)+\left(6x-1\right)\left(x-6\right)}{x\left(x+6\right)\left(x-6\right)}\right):\dfrac{x^2+1}{x^2-36}\)
\(=\dfrac{6x^2+37x+6+6x^2-37x+6}{x\left(x+6\right)\left(x-6\right)}:\dfrac{x^2+1}{x^2-36}=\dfrac{12x^2+12}{x\left(x+6\right)\left(x-6\right)}:\dfrac{x^2+1}{x^2-36}=\dfrac{12}{x}\)
Với `x \ne 0,x \ne +-6` có:
`A=([6x+1]/[x^2-6x]+[6x-1]/[x^2+6x]).[x^2-36]/[x^2+1]`
`A=[(6x+1)(x+6)+(6x-1)(x-6)]/[x(x+6)(x-6)].[(x-6)(x+6)]/[x^2+1]`
`A=[6x^2+36x+x+6+6x^2-36x-x+6]/[x(x^2+1)]`
`A=[12x^2+12]/[x(x^2+1)]`
A=[12(x^2+1)]/[x(x^2+1)]=12/x`
Với `x \ne 0,x \ne +-6` có:
`A=([6x+1]/[x^2-6x]+[6x-1]/[x^2+6x]).[x^2-36]/[x^2+1]`
`A=[(6x+1)(x+6)+(6x-1)(x-6)]/[x(x+6)(x-6)].[(x-6)(x+6)]/[x^2+1]`
`A=[6x^2+36x+x+6+6x^2-36x-x+6]/[x(x^2+1)]`
`A=[12x^2+12]/[x(x^2+1)]`
`A=[12(x^2+1)]/[x(x^2+1)]=12/x`