\(=\dfrac{2+\sqrt{3}-\sqrt{3}}{\sqrt{5}-1-\sqrt{5}}=-2\)
\(=\dfrac{2+\sqrt{3}-\sqrt{3}}{\sqrt{5}-1-\sqrt{5}}=-2\)
thực hiện phép tính:a)\(\left(\sqrt{8}-3\sqrt{2}+\sqrt{10}\right)\left(\sqrt{2}-3\sqrt{0,4}\right)\)
b)\(\left(15\sqrt{50}+5\sqrt{200}-3\sqrt{450}\right):\sqrt{10}\)
c)\(\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\)
d)\(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}\)
e)\(\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)
f)\(\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}\)
g)\(\sqrt[3]{26+15\sqrt{3}}-\sqrt[3]{26-15\sqrt{3}}\)
\(B=\left(2-\sqrt{3}\right).\sqrt{26+15\sqrt{3}}-\left(2+\sqrt{3}\right).\sqrt{26-15\sqrt{3}}\)
\(C=\left(\sqrt{10}-\sqrt{2}\right).\sqrt{3+\sqrt{5}}\)
Thực hiện phép tính:
\(a,\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right)\cdot\sqrt{7}+7\sqrt{8}\)
\(b,\left(\sqrt{8}-3\sqrt{2}+\sqrt{10}\right)\cdot\left(\sqrt{2}-3\sqrt{0.4}\right)\)
\(c,\left(15\sqrt{50}+5\sqrt{200}-3\sqrt{450}\right):\sqrt{10}\)
\(d,\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}\)
\(e,\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)
\(f,\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}\)
\(g,\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\)
\(h,\sqrt[3]{26+15\sqrt{3}}-\sqrt[3]{26-15\sqrt{3}}\)
Bài 1: Rút gọn các biểu thức sau:
a) \(\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}\)
b) \(\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\)
c) \(\sqrt[3]{26+15\sqrt{3}}-\sqrt[3]{26-15\sqrt{3}}\)
d) \(\sqrt[3]{2\sqrt{3}-4\sqrt{2}}.\sqrt[6]{44+16\sqrt{6}}\)
Tính giá trị của biểu thức sau:
\(a,^3\sqrt{26+15\sqrt{3}}-^3\sqrt{26-15\sqrt{3}}\)
\(b,^3\sqrt{9+4\sqrt{5}}+^3\sqrt{9-4\sqrt{5}}\)
\(c,^3\sqrt{20+14\sqrt{2}}+^3\sqrt{20-14\sqrt{2}}\)
Tính giá trị của biểu thức sau:
\(a,^3\sqrt{26+15\sqrt{3}}-^3\sqrt{26-15\sqrt{3}}\)
\(b,^3\sqrt{9+4\sqrt{5}}+^3\sqrt{9-4\sqrt{5}}\)
\(c,^3\sqrt{20+14\sqrt{2}}+^3\sqrt{20-14\sqrt{2}}\)
\(a:\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{5+2\sqrt{6}}\)
b : \(\dfrac{\sqrt{6}-\sqrt{2}}{\sqrt{3}-1}-\sqrt{2}\)
c : \(\left(2+\dfrac{5-2\sqrt{5}}{2-\sqrt{5}}\right).\left(2+\dfrac{5-3\sqrt{5}}{3-\sqrt{5}}\right)\)
d : \(\left(\dfrac{15}{\sqrt{6}+1}+\dfrac{4}{\sqrt{6}-2}-\dfrac{12}{3-\sqrt{6}}\right).\left(\sqrt{6}+11\right)\)
thu gọn các biểu thức sau
\(\sqrt{\sqrt{5-\sqrt{3-\sqrt{29-12\sqrt{5}}}}}\)
\(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)
\(\sqrt{6-2\sqrt{\sqrt{2}+\sqrt{12+\sqrt{18-8\sqrt{2}}}}}\)
\(\left(2-\sqrt{3}\right)\)\(\sqrt{26+15\sqrt{3}}\)-\(\left(2+\sqrt{3}\right)\)\(\sqrt{26-15\sqrt{3}}\)
Bài 1: Tính
a) \(5\sqrt{8}-4\sqrt{27}-2\sqrt{75}+\sqrt{108}\)
b) \(1\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(1-\sqrt{6}\right)^2}\)
c) \(\dfrac{5\sqrt{3}-3\sqrt{5}}{\sqrt{5}-\sqrt{3}}+\dfrac{1}{4+\sqrt{15}}\)
d) \(\dfrac{2\sqrt{3-\sqrt{5}}\left(3+\sqrt{5}\right)}{\sqrt{10}-\sqrt{2}}-\dfrac{\sqrt{15}+\sqrt{5}}{\sqrt{12}+2}\)
Bài 2: Cho (d₁): y = \(\dfrac{1}{2}x-4\) và (d₂): y = \(-3x+3\) . Vẽ (d₁) và (d₂) trên cùng một hệ trục tọa độ. Tìm tọa độ giao điểm A của 2 đường thẳng trên.
Helpp!!