Quay hình phẳng G giới hạn bởi các đường: y = x 3 ; y = 1, x = 0 xung quanh trục Oy. Khi đó thể tích của khối tròn xoay này bằng:
A. π B. 5 π /3
C. 3 π /5 D. 3/5
Cho hình phẳng giới hạn bởi các đường y=√x và y=x quay xung quanh trục Ox. Thể tích của khối tròn xoay tạo thành bằng:
(A). 0
(B). –π
(C). π
(D). π/6
Cho hình phẳng (D) được giới hạn bởi các đường x=0; x = π ; y = 0 và y = -sinx. Thể tích V của khối tròn xoay tạo thành khi quay (D) xung quanh trục Ox được tính theo công thức:
Thể tích khối tròn xoay tạo bởi phép quay quanh trục Ox của hình phẳng giới hạn bởi các đường: y = sin 2 / 3 x , y = 0 và x = π /2 bằng:
A. 1; B. 2/7;
C. 2 π ; D. 2 π /3.
Thể tích khối tròn xoay tạo bởi phép quay quanh trục Ox của hình phẳng giới hạn bởi các đường: y = sin 2 / 3 x , y = 0 và x = π/2 bằng:
A. 1; B. 2/7;
C. 2π; D. 2π/3.
Thể tích khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi các đường y = xe x , y=0, x=0, x=1 xung quanh trục Ox là:
A.
B.
C.
D.
Cho hình phẳng (D) giới hạn bởi các đường y = ( x - 2 ) 2 và y = 4 . Tính thể tích của vật thể tròn xoay sinh ra bởi hình (D) khi nó quay xung quanh trục Oy
A. 219 π 2
B. 172 π 5
C. 113 π 2
D. 128 π 3
Thể tích khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi các đường thẳng y = x e x ; y = 0; x = 1 xung quanh trục Ox là
Tính thể tích khối tròn xoay do hình phẳng giới hạn bởi các đường thẳng y = cosx, y = 0, x = 0, x = π quay quanh trục Ox.
A. π 3
B. π 2 3
C. π 2
D. π 3 3