\(2x^4+8x=4\sqrt{4+x^4}+4\sqrt{x^4-4}\)
\(^{x^3-3x^2-8x+40-8\sqrt[4]{4x+4}=0}\)
\(\sqrt[4]{x}+\sqrt[4]{1-x}+\sqrt{x}-\sqrt{1-x}=\sqrt{2}+\sqrt[4]{8}\)
Cho Q= \(\dfrac{\sqrt{x}-1}{\sqrt{x}+4}\) + \(\dfrac{9\sqrt{x}-4}{x-16}\) - \(\dfrac{4\sqrt{x}-4x}{\sqrt{x}-4}\)
Chứng minh Q= \(\dfrac{x-3\sqrt{x}}{\sqrt{x}-4}\)
1,\(\sqrt{x-5}+\sqrt{x+4}=3\)
2,\(\sqrt{x+4-4\sqrt{x}}+\sqrt{x+6-6\sqrt{x}}=1\)
3,\(\sqrt{x+3}-\sqrt{x-4}=1\)
4,\(\sqrt{15-x}+\sqrt{3-x}=6\)
5,\(\sqrt{10-x}+\sqrt{x+3}=5\)
6,\(\sqrt{2x-1}+\sqrt{x-2}=\sqrt{x+1}\)
7,\(\sqrt{x+6-4\sqrt{x+2}}+\sqrt{x+11-6\sqrt{x+2}}=1\)
8,\(\sqrt{x^2-5x+6}+\sqrt{x-2-3\sqrt{x-3}}=3\)
9,\(2x^2-x+4=2\sqrt{2x+3}\)
Bài giải:
Ta có:
\(2^{x+4}=2^x.2^4=2^x.16\)
\(2^{x+3}=2^x.2^3=2^x.8\)
\(2^{x+2}=2^x.2^2=2^x.4\)
\(2^{x+1}=2^x.2^1=2^x.2\)
\(2^x=2^x.1\)
=>\(2^x\left(16+8+4+2+1\right)-96=400\)
\(\Leftrightarrow2^x=\frac{496}{31}\)
\(\Leftrightarrow2^x=16\)
\(\Leftrightarrow2^x=2^4\)
Vậy x=4
giải phương trình sau?
1)\(\sqrt{x+1}+\sqrt{x+10}=\sqrt{x+5}+\sqrt{x+2}\)
2) \(8\sqrt{x^3+1}=3\left(x^2-2x\right)\)
3) \(20\sqrt{\frac{x-2}{x+1}}-5\sqrt{\frac{x+2}{x-1}}=-4\sqrt[4]{\frac{x^2-4}{x^2-1}}\)
4)\(\sqrt{x^2+x-1}+\sqrt{-x^2+x+1}=x^2-x-2\)
5) \(\frac{4x^2}{\sqrt{x^4+x}}=-x^2+4x-3\)
6)\(\sqrt[4]{x}+\sqrt[4]{2-x}=2\)
Giải phương trình :
1, \(\sqrt{x^2-6x+9}=2x-1\)
2, \(\sqrt{x+4\sqrt{x}+4}=5x+2\)
3, \(\sqrt{x^2-2x+1}+\sqrt{x^2+4x+4}=4\)
4, \(\sqrt{x-2\sqrt{x}+1}-\sqrt{x-4\sqrt{x}+4}=10\)
a)\(\sqrt{x^2-2x+4}=x-1\)
b)\(\sqrt{x^2-x-4}=\sqrt{x-1}\)
c)\(\sqrt{x+2\sqrt{x-1}}=2\)
d)\(\sqrt{x^2-2x+1}=19x-1\)
e)\(\sqrt{x+4\sqrt{x-4}}=2\)
rút gọn
\(\frac{x-4}{x-4\sqrt{x}+4}\)-\(\frac{x+2\sqrt{x}}{x-4}\)
\(\sqrt{x+4\sqrt{x-4}}\)+\(\sqrt{x-4\sqrt{x-4}}\)=4
Giải phương trình