x^4+x^2+1=0
x^2(x^2+1)+1=0
x^2(x^2+1)+x^2+1=X^2
(x^2+1)(x^2+1)=x^2
(x^2+1)^2=x^2
=> x^2+1=x^2 (ko có)
vậy p(x) vô ngiệm với mọi x
\(P\left(x\right)=x^4+x^2+1\)
\(=\left[\left(x^2\right)^2+2\cdot\frac{1}{2}\cdot x+\frac{1}{4}\right]+\frac{3}{4}\)
\(=\left(x^2+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{1}{4}+\frac{3}{4}=1>1\forall x\)
\(\Rightarrow P\left(x\right)\) vô nghiệm (ĐPCM)