\(=\sqrt{7-2\cdot\sqrt{7}\cdot\sqrt{2}+2}+\sqrt{7+2\cdot\sqrt{7}\cdot\sqrt{2}+2}\)
\(=\sqrt{\left(\sqrt{7}-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{7}+\sqrt{2}\right)^2}\)
\(=\sqrt{7}-\sqrt{2}+\sqrt{7}+\sqrt{2}=2\sqrt{7}\)
\(=\sqrt{7-2\cdot\sqrt{7}\cdot\sqrt{2}+2}+\sqrt{7+2\cdot\sqrt{7}\cdot\sqrt{2}+2}\)
\(=\sqrt{\left(\sqrt{7}-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{7}+\sqrt{2}\right)^2}\)
\(=\sqrt{7}-\sqrt{2}+\sqrt{7}+\sqrt{2}=2\sqrt{7}\)
Tính:
1) \(\sqrt{14-2\sqrt{33}}\)
2) \(\sqrt{12-2\sqrt{35}}\)
3) \(\sqrt{16-2\sqrt{55}}\)
4) \(\sqrt{14-6\sqrt{5}}\)
5) \(\sqrt{17-12\sqrt{2}}\)
6) \(\sqrt{27-12\sqrt{5}}\)
7) \(\sqrt{4+\sqrt{15}}\)
LÀM CHI TIẾT GIÚP MK NHÉ!
\(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}+1}{\sqrt{x}-3}+\dfrac{3-11\sqrt{x}}{9-x},x\ge0,x\ne9\)
cách làm chi tiết
Tính:
1) \(\sqrt{4-2\sqrt{3}}\)
2) \(\sqrt{5+2\sqrt{6}}\)
3) \(\sqrt{7-2\sqrt{10}}\)
4) \(\sqrt{14-6\sqrt{6}}\)
5) \(\sqrt{8+2\sqrt{15}}\)
6) \(\sqrt{10-2\sqrt{21}}\)
7) \(\sqrt{11+2\sqrt{18}}\)
LÀM CHI TIẾT GIÚP MK NHÉ!
\(\sqrt{14-8\sqrt{3}}\)- \(\sqrt{9+4\sqrt{5}}\)
Giải chi tiết giùm mình nha :3
Rút gọn biểu thức :
a) A=\(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\).
b)B=\(\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\)
c) C=\(\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}.\)
Rút gọn:
A=\(\sqrt{6-2\sqrt{5}}-\sqrt{6+2\sqrt{5}}\)
B=\(\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)
C=\(\sqrt{14-6\sqrt{5}-\sqrt{14+6\sqrt{5}}}\)
phân tích thành nhân tử
\(a-6\sqrt{a}+9-b^2\)
\(x-9\)
\(x-7\sqrt{x}+12\)
\(x\sqrt{x}-64\)
làm chi tiết xíu giúp em ạ.
Chứng minh rằng các biểu thức sau là 1 số nguyên:
a) \(A=\sqrt[3]{20+14\sqrt{2}}-\sqrt[3]{14\sqrt{2}-20}\)
b) \(B=\sqrt[3]{1+\frac{\sqrt{84}}{9}}+\sqrt[3]{1-\frac{\sqrt{84}}{9}}\)
Tính giá trị của biểu thức sau:
\(a,^3\sqrt{26+15\sqrt{3}}-^3\sqrt{26-15\sqrt{3}}\)
\(b,^3\sqrt{9+4\sqrt{5}}+^3\sqrt{9-4\sqrt{5}}\)
\(c,^3\sqrt{20+14\sqrt{2}}+^3\sqrt{20-14\sqrt{2}}\)