Vì `VT=\sqrt{2x^2-9x+16}>0AAx`
`=>x-4>0`
`<=>x>4`
Bình phương 2 vế ta có:
`2x^2-9x+16=x^2-8x+16`
`<=>x^2-x=0`
`<=>x(x-1)=0`
Mà `x>4=>x-1>3>0`
`=>x(x-1)>0`
Vậy pt vô nghiệm
Vì `VT=\sqrt{2x^2-9x+16}>0AAx`
`=>x-4>0`
`<=>x>4`
Bình phương 2 vế ta có:
`2x^2-9x+16=x^2-8x+16`
`<=>x^2-x=0`
`<=>x(x-1)=0`
Mà `x>4=>x-1>3>0`
`=>x(x-1)>0`
Vậy pt vô nghiệm
Tổng bình phương tất cả các nghiệm của phương trình: (2x + 1)(x + 1)2(2x + 3) = 18 là bao nhiêu
Tổng tất cả các nghiệm của phương trình:
\(\sqrt{9x^2+33x+28}+5\sqrt{4x-3}=5\sqrt{3x+4}+\sqrt{12x^2+19x-21}\)
GIẢI PHƯƠNG TRÌNH
\(2\sqrt{2x+4}+4\sqrt{2-x}=\sqrt{9x^2+16}\)
phương trình \(\sqrt{x-5}=\sqrt{3-x}\) có bao nhiêu nghiệm
phương trình \(\sqrt{4x-8}-2\sqrt{\dfrac{x-2}{4}}=3\) có nghiệm là
Tổng bình phương tất cả các nghiệm của phương trình \(x\sqrt{3-2x}=3x^2-6x+4\)
giải phương trình
a)\(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)
b)\(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\)
c)\(\sqrt{4x+20}+\sqrt{x+5}-\dfrac{1}{3}\sqrt{9x+45}=4\)
d)\(\dfrac{1}{3}\sqrt{2x}-\sqrt{8x}+\sqrt{18x}-10=2\)
Tất cả đều có điều kiện \(x\ge0\)
a,\(\sqrt{x^2-6x+9}+x=11\)
b,\(\sqrt{3x^2-4x+3=1-2x}\)
c,\(\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}=4\)
d,\(\sqrt{9x+9}+\sqrt{4x+4}=\sqrt{x+1}\)
Giải phương trình:
\(2\sqrt{2x+4}+4\sqrt{2-x}=\sqrt{9x^2+16}\)
Sau khi bình phương lên thì mình chịu, mn có thể giải tiếp ko ạ ?
GIẢI PHƯƠNG TRÌNH CÁC PHƯƠNG TRÌNH SAU
1) \(2\sqrt{2x+4}+4\sqrt{2-x}=\sqrt{9x^2+16}\)
2) \(x^2-\sqrt{x+5}=5\)