x(x+1)(x+2)(x+3) + 1
= x(x+3).(x+1)(x+2) + 1
= (x^2 + 3x) ( x^2 + 3x +2) + 1
Đặt x^2 + 3x = y ta có :
y .(y + 2)+ 1 = y^2 + 2y + 1 = (y + 1)^2
Thay y = x^2 + 3x ta có :
( y + 1)^2 = ( x^2 + 3x + 1)^2
x.(x+1).(x+2).(x+3)+1
=x.(x+3).(x+1).(x+2)+1
=(x2+3x)(x2+3x+2)+1
Đặt y=x2+3x ta được:
y.(y+2)+1
=y2+2x+1
=(y+1)2
thay y=x2+3x ta được:
(x2+3x)2
=[x.(x+3)]2
=x2.(x+3)2
Vậy x.(x+1).(x+2).(x+3)+1=x2.(x+3)2
sừa nè
x.(x+1).(x+2).(x+3)+1
=x.(x+3).(x+1).(x+2)+1
=(x2+3x)(x2+3x+2)+1
Đặt y=x2+3x ta được:
y.(y+2)+1
=y2+2x+1
=(y+1)2
thay y=x2+3x ta được:
(x2+3x+1)2
Vậy x.(x+1).(x+2).(x+3)+1=x2.(x2+3x+1)2