\(\left(x^2+4y^2-20\right)^2-16\left(xy-4\right)^2=\left(x^2+4y^2-20\right)^2-\left(4xy-16\right)^2=\left(x^2+4y^2-20-4xy+16\right)\left(x^2+4y^2-20+4xy-16\right)=\left[\left(x-2y\right)^2-4\right]\left[\left(x+2y\right)^2-36\right]=\left(x-2y-2\right)\left(x-2y+2\right)\left(x+2y-6\right)\left(x+2y+6\right)\)
\(\left(x^2+4y^2-20\right)^2-\left(4xy-16\right)^2\)
\(=\left(x^2+4y^2-20-4xy+16\right)\left(x^2+4y^2-20+4xy-16\right)\)
\(=\left[\left(x-2y\right)^2-4\right]\left[\left(x+2y\right)^2-36\right]\)
\(=\left(x-2y-2\right)\left(x-2y+2\right)\left(x+2y-6\right)\left(x+2y+6\right)\)