`x^3+y^3+21x+21y`
`=(x+y)(x^2-xy+y^2)+21(x+y)`
`=(x+y)(x^2-xy+y^2+21)`
\(x^3+y^3+21x+21y\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+21\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2+21\right)\)
\(l,x^3+y^3+21x+21y\\=(x^3+y^3)+(21x+21y)\\=(x+y)(x^2-xy+y^2)+21(x+y)\\=(x+y)(x^2-xy+y^2+21)\)
#\(Toru\)