a) x3-3x+2= x3-1-3x+3= (x-1)(x2+x+1)-3(x-1)= (x-1)(x2+x+1-3)= (x-1)(x2+x-2)
c,x8+x7+x6+x5+x4+x3+x2+x+1
=(x8+x7+x6)+(x5+x4+x3)+(x2+x+1)
=x6(x2+x+1)+x3(x2+x+1)+(x2+x+1)
=(x2+x+1)(x6+x3+1)
a) x3-3x+2=(x3-3x)+2=x(x2-3)+2
b) x8+x+1=(x8+x)+1=x(x7+1)+1
c) x8+x7+1=(x8+x7)+1=x7(x+1)+1
\(x^8+x^7+1\)
= \(\left(x^8+x^7+x^6\right)+\left(x^5+x^4+x^3\right)+\left(x^2+x^1+1\right)\)\(-\left(x^6+x^5+x^4\right)-\left(x^3+x^2+x\right)\)
= \(x^6\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)\)\(+\left(x^2+x+1\right)-x^4\left(x^2+x+1\right)-x\left(x^2+x+1\right)\)
= \(\left(x^6-x^4+x^3+x^2-x+1\right)\)\(\left(x^2+x+1\right)\)
Phân tích đa thức thành nhân tử:
x^7+x^5-1
Giúp mih vs mình cần gấp