\(9x^2-12xy-20y-25=9x^2-25-4y\left(3x+5\right)\)
\(=\left(3x+5\right)\left(3x-5\right)-4y\left(3x+5\right)=\left(3x+5\right)\left(3x-4y-5\right)\)
\(xy^2-49x^3-28x^2-4x=x\left[y^2-\left(49x^2+28x+4\right)\right]\)
\(=x\left[y^2-\left(7x+2\right)^2\right]=x\left(y+7x+2\right)\left(y-7x-2\right)\)
\(x^2-3x-2019.2022=x^2-3x-2019\left(2019+3\right)\)
\(=x^2-3x-2019^2-3.2019=\left(x-2019\right)\left(x+2019\right)-3\left(x+2019\right)\)
\(=\left(x+2019\right)\left(x-2022\right)\)
a: \(9x^2-12xy-20y-25\)
\(=\left(3x-5\right)\left(3x+5\right)-4y\left(3x+5\right)\)
\(=\left(3x+5\right)\left(3x-5-4y\right)\)