(x2+x+1)(x2+x+2)-12
=\(\left(x^2+x+\frac{3}{2}-\frac{1}{2}\right)\left(x^2+x+\frac{3}{2}+\frac{1}{2}\right)-12\)
=\(\left(x^2+x+\frac{3}{2}\right)^2-\frac{1}{4}-12\)
=\(\left(x^2+x+\frac{3}{2}\right)^2-\frac{49}{4}\)
=\(\left(x^2+x+\frac{3}{2}-\frac{7}{2}\right)\left(x^2+x+\frac{3}{2}+\frac{7}{2}\right)\)
=\(\left(x^2+x-2\right)\left(x^2+x+5\right)\)
\(A=\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)
Đặt: \(x^2+x+1=t\) Khi đó ta có:
\(A=t\left(t+1\right)-12\)
\(=t^2+t-12=\left(t-3\right)\left(t+4\right)\)
Thay trở lại đc:
\(A=\left(x^2+x-2\right)\left(x^2+x+5\right)\)
\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+5\right)\)