Cho số phức z thỏa mãn 5 z + i = 2 - i z + 1 . Gọi a, b lần lượt là phần thực và phần ảo của số phức 1 + z + z 2 , tổng a+b bằng
A. 13
B. -5
C. 9
D. 5
Cho số phức z thỏa mãn điều kiện (1+i) z ¯ - 1 - 3i = 0. Tìm phần ảo của số phức w = 1 - zi + z ¯
A. -i
B. -1
C. 2
D. -2i
Nếu a ,b lần lượt là phần thực và phần ảo của số phức z=1-i thì
A.
.
B.
.
C.
.
D. ![]()
Trong các khẳng định sau đây, khẳng định nào sai?
A:
ii là số phức thỏa mãn i^2=-1i2=−1.
B:
Số phức 2-9i2−9i có phần thực là 2 và phần ảo là -9−9.
C:
Số phức 2-i2−i có phần thực là 2 và phần ảo là 11.
D:
Phương trình x^2+1 = 0x2+1=0 có hai nghiệm trên tập số phức \mathbb{C}C là ii và -i−i.
Cho số phức z = 2 + i. Phần ảo của số phức z = z + 1 z - 1 là
A. -2
B. -2i
C. 2
D. 2i
Phần thực và phần ảo của số phức z thỏa mãn: (1 + i)2(2 - i) z = 8 + i + (1 + 2i)z lần lượt là?
A. -3; -2
B. 2; 3
C. 2; -3
D. Đáp án khác.
Cho số phức z = ( 1 - i ) ( a + b i ) 1 + i thì phần ảo của z bằng:
A. b
B. -b
C. a
D. -a
Gọi z là số phức có môđun nhỏ nhất và thỏa mãn z + 1 + i = z ¯ + i . Tổng phần thực và phần ảo của số phức z bằng




Phần ảo của số phức z = - 1 + i là
![]()
![]()
![]()
![]()
Tìm phần thực, phần ảo của số phức z thỏa (z/2 – 1) (1 - i) = ( 1 + i) 3979
A. Phần thực là 21990 và phần ảo là 2.
B. Phần thực là - 21990 và phần ảo là 2.
C. Phần thực là -21989 và phần ảo là 1.
D. Phần thực là 21989 và phần ảo là 1.