ĐK: x \(\in\) N, x \(\ne\) 0 \(\Rightarrow\) x \(\ge\) 1
P = \(\dfrac{\sqrt{x}+2}{\sqrt{x}}\).\(\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)
P = \(\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
P = 1 + \(\dfrac{1}{\sqrt{x}}\)
P = 1 \(-\) \(\left(-\dfrac{1}{\sqrt{x}}\right)\)
Vì theo ĐK, x\(\ge\)1\(\Rightarrow\sqrt{x}\ge1\)\(\Rightarrow-\dfrac{1}{\sqrt{x}}\ge-1\)\(\Rightarrow1-\left(-\dfrac{1}{\sqrt{x}}\right)\ge1-\left(-1\right)=2\)
Dấu "=" xảy ra \(\Leftrightarrow-\dfrac{1}{\sqrt{x}}=1\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\)(T/m ĐK)
Vậy Min(P) = 2\(\Leftrightarrow x=1\)