Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
tu nguyen

Nhờ mn giúp mik vs ạ.loading...

Nguyễn Lê Phước Thịnh
5 tháng 12 2023 lúc 18:59

a: \(\left\{{}\begin{matrix}x-2y+2=0\\2y-x^2=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2y=x+2\\2y=x^2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x^2=x+2\\x^2=2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2-x-2=0\\y=\dfrac{x^2}{2}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left(x-2\right)\left(x+1\right)=0\\y=\dfrac{x^2}{2}\end{matrix}\right.\)

(x-2)(x+1)=0

=>\(\left[{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

Khi x=2 thì \(y=\dfrac{x^2}{2}=\dfrac{2^2}{2}=\dfrac{4}{2}=2\)

Khi x=-1 thì \(y=\dfrac{x^2}{2}=\dfrac{\left(-1\right)^2}{2}=\dfrac{1}{2}\)

b: \(\left\{{}\begin{matrix}2x^2+xy+y^2-x=5\\4x^2+2xy+2y^2-y=4\end{matrix}\right.\)(I)

=>\(\left\{{}\begin{matrix}4x^2+2xy+2y^2-2x=10\\4x^2+2xy+2y^2-y=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-2x+y=6\\2x^2+xy+y^2-x=5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=2x+6\\2x^2+x\left(2x+6\right)+\left(2x+6\right)^2-x=5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=2x+6\\2x^2+2x^2+6x+4x^2+24x+36-x=5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=2x+6\\8x^2+29x+31=0\end{matrix}\right.\)

\(8x^2+29x+31=0\)(1)

\(\text{Δ}=29^2-4\cdot8\cdot31\)

\(=841-32\cdot31=-151< 0\)

=>Phương trình (1) vô nghiệm

Do đó: Hệ phương trình (I) vô nghiệm


Các câu hỏi tương tự
tu nguyen
Xem chi tiết
tu nguyen
Xem chi tiết
tu nguyen
Xem chi tiết
tu nguyen
Xem chi tiết
tu nguyen
Xem chi tiết
tu nguyen
Xem chi tiết
tu nguyen
Xem chi tiết
tu nguyen
Xem chi tiết
tu nguyen
Xem chi tiết