\(N=\left(1-\dfrac{1}{3}\right)\times\left(1-\dfrac{1}{4}\right)\times\left(1-\dfrac{1}{5}\right)...\times\left(1-\dfrac{1}{99}\right)\times\left(1-\dfrac{1}{100}\right)=\dfrac{2}{3}\times\dfrac{3}{4}\times\dfrac{4}{5}...\times\dfrac{98}{99}\times\dfrac{99}{100}=\dfrac{2}{100}=\dfrac{1}{50}\)
\(\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)\cdot...\cdot\left(1-\dfrac{1}{99}\right)\left(1-\dfrac{1}{100}\right)\)
\(=\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot\dfrac{4}{5}\cdot...\cdot\dfrac{98}{99}\cdot\dfrac{99}{100}\)
\(=\dfrac{1}{50}\)
