Chiều cao của hình trụ là h = 2 R 2 - r 2
⇒ V t p = 2 πr 2 R 2 - r 2 = 4 π 1 4 r 4 R 2 - r 2 ≤ 2 π 1 2 r 2 + 1 2 r 2 + R 2 - r 2 3 3 = 2 π R 3 3 3
Thể tích lớn nhất đặt được khi
1 2 r 2 = R 2 - r 2 ⇒ r = 6 3 R
Đáp án cần chọn là A
Chiều cao của hình trụ là h = 2 R 2 - r 2
⇒ V t p = 2 πr 2 R 2 - r 2 = 4 π 1 4 r 4 R 2 - r 2 ≤ 2 π 1 2 r 2 + 1 2 r 2 + R 2 - r 2 3 3 = 2 π R 3 3 3
Thể tích lớn nhất đặt được khi
1 2 r 2 = R 2 - r 2 ⇒ r = 6 3 R
Đáp án cần chọn là A
Người ta cần chế tạo một ly dạng hình cầu tâm O, đường kính 2R. Trong hình cầu có một hình trụ tròn xoay nội tiếp trong hình cầu. Nước chỉ chứa được trong hình trụ. Hãy tìm bán kính đáy r của hình trụ để ly chứa được nhiều nước nhất.
A. r = R 6 3
B. r = 2 R 3
C. r = 2 R 3
D. r = R 3
Khi cắt mặt cầu S (O, R) bởi một mặt kính đi qua tâm O, ta được hai nửa mặt cầu giống nhau. Giao tuyến của mặt kính đó với mặt cầu gọi là mặt đáy của mỗi nửa mặt cầu. Một hình trụ gọi là nội tiếp nửa mặt cầu S (O, R) nếu một đáy của hình trụ nằm trong đáy của nửa mặt cầu, còn đường tròn đáy kia là giao tuyến của hình trụ với nửa mặt cầu. Biết R = 1, tính bán kính đáy r và chiều cao h của hình trụ nội tiếp nửa mặt cầu S (O, R) để khối trụ có thể tích lớn nhất.
A. r = 3 2 ; h = 6 2
B. r = 6 2 ; h = 3 2
C. r = 6 3 ; h = 3 3
D. r = 3 3 ; h = 6 3
Cho hình cầu (S) tâm O, bán kính R. Hình cầu (S) ngoại tiếp một hình trụ tròn xoay (T) có đường cao bằng đường kính đáy và hình cầu (S) lại nội tiếp trong một hình nón tròn xoay (N) có góc ở đỉnh bằng 60 ° . Tính tỉ số thể tích của hình trụ (N) và hình nón (T).
A. V T V N = 2 6
B. V T V N = 2 3
C. V T V N = 3 2
D. Đáp án khác
Một hình trụ có trục OO’ chứa tâm của một mặt cầu bán kính R, các đường tròn đáy của hình trụ đều thuộc mặt cầu trên, đường cao của hình trụ đứng bằng R. Tính thể tích V của khối trụ.
A. V = 3 π R 3 4
B. V = π R 3
C. V = π R 3 4
D. V = π R 3 3
Cho hình cầu (S) tâm I, bán kính R không đổi. Một hình trụ có chiều cao h và bán kính đáy r thay đổi nội tiếp hình cầu. Tính chiều cao h theo R sao cho diện tích xung quanh của hình trụ lớn nhất.
A. h = R 2
B. h = R
C. h = R 2
D. h = R 2 2
Cho hình cầu (S) tâm I, bán kính R không đổi. Một hình trụ có chiều cao h và bán kính đáy r thay đổi nội tiếp hình cầu. Tính chiều cao h theo R sao cho diện tích xung quanh của hình trụ lớn nhất.
A. h = R 2 .
B. h = R
C. h = R 2 .
D. h = R 2 2 .
Cho hình cầu (S) tâm I, bán kính R không đổi. Một hình trụ có chiều cao h và bán kính r thay đổi nội tiếp hình cầu. Tính chiều cao h theo R sao cho diện tích xung quanh của hình trụ lớn nhất
A. h = R 2
B. h = R
C. h = R 2
D. h = R 2 2
Cho mặt cầu (S) có bán kính R. Một hình trụ có chiều cao h và bán kính đáy r thay đổi nội tiếp mặt cầu. Tính chiều cao h theo R sao cho diện tích xung quanh của hình trụ lớn nhất.
A. h = R 2
B. h = R
C. h = R 2
D. h = R 2 2
Cho mặt cầu (S) có bán kính R. Một hình trụ có chiều cao h và bán kính đáy r thay đổi nội tiếp mặt cầu. Tính chiều cao h theo R sao cho diện tích xung quanh của hình trụ lớn nhất.
A. h = R 2 .
B. h = R
C. h = R 2 .
D. h = R 2 2 .