\(\sqrt{5x-1}=8\Leftrightarrow5x-1=64\Leftrightarrow x=13\)
\(\sqrt{5x-1}=8\Leftrightarrow5x-1=64\Leftrightarrow x=13\)
tìm nghiệm
a)\(\sqrt{5x-1}\)=8
b)tập nghiệm của bất phương trình\(\sqrt{5x-2}\)<4
c)\(\sqrt{x-2x+1}-\sqrt{x^2-4x+4}=x-3\)
1.Tìm x: \(\sqrt{5x-1}=8\)
2. Nghiệm của phương trình: \(\sqrt{2-3x}=\sqrt{11}\)
b1:tìm nghiệm nguyên của phương trình sau: \(5x^2+2y^2+10x+4y=6\)
b2: cho số thực A=\(\sqrt{6-3\sqrt{2+\sqrt{3}}}-\sqrt{2+\sqrt{2+\sqrt{3}}}\)
có là 1 nghiệm của pt \(\left(x^2-8\right)=32\)ko
phương trình \(\sqrt{x-5}=\sqrt{3-x}\) có bao nhiêu nghiệm
phương trình \(\sqrt{4x-8}-2\sqrt{\dfrac{x-2}{4}}=3\) có nghiệm là
Cho 2 phương trình x^2+ax+12=0 và x^2+bx+7=0 có nghiệm chung. Khi đó A= 2a+3b+4 min=?
Cho a,b là nghiệm của phương trình x^2+5x-8=0 có a/b+1 và b/a+1 là
1, cho phương trình ẩn x ; x2 - 5x + m - 2 = 0 ( 1) (m là tham số )
a, giải phương trình ( 1) với m = 6
b. tìm m để phương trình ( 1) có 2 nghiệm phân biệt x1 .x2 thỏa mãn hệ thức\(\dfrac{1}{\sqrt{x_1}}\text{ + }\dfrac{1}{\sqrt{x_2}}\text{ = }\dfrac{3}{2}\)
\(\dfrac{1}{\sqrt{x_1}}\text{ + }\dfrac{1}{\sqrt{x_2}}\text{ = }\dfrac{3}{2}\)
Cho phương trình \(x^4+ax^3+bx^2+5x+2=0\)có nghiệm \(x=1+\sqrt{2}\)
Tìm các nghiệm còn lại của phương trình
1.Giải các phương trình sau:
a) 2x2 +16 -6 = 4\(\sqrt{x\left(x+8\right)}\)
b) x4 -8x2 + x-2\(\sqrt{x-1}\) + 16=0
2. Gọi x1;x2 là nghiệm phương trình x2 -3x -7 =0. Không giải phương trình tính các giá trị của biểu thức sau:
A = \(\dfrac{1}{x_1-1}+\dfrac{1}{x_2-1}\)
B= \(x^2_1+x_2^2\)
C= |x1 - x2|
D= \(x_1^4+x_2^4\)
E= (3x1 + x2) (3x2 + x1)
cho phương trình : x^2 + 5x - 1 = 0 ( 1 )
Không giải phương trình ( 1 ), hãy lập 1 phương trình bậc hai có các nghiệm là lũy thừa bậc bốn của các nghiệm của phương trình ( 1 )