Đáp án A
Phương pháp giải: Áp dụng nguyên lý bù trừ trong bài toán xác suất
Lời giải:
Ta tính xác suất để xảy ra không một lá thư nào đúng địa chỉ.
Mỗi phong bì có 4 cách bỏ thư vào nên có tất cả 4! cách bỏ thư.
Gọi U là tập hợp các cách bỏ thư và Am là tính chất lá thư thứ m bỏ đúng địa chỉ.
Khi đó, theo công thức về nguyên lý bù trừ, ta có N ¯ = 4 ! - N 1 + N 2 - . . . + ( - 1 ) 4 N 4 .
Trong đó Nm ( 1 ≤ m ≤ 4 ) là số tất cả các cách bỏ thư sao cho có m lá thư đúng địa chỉ.
Nhận xét rằng, Nm là tổng theo mọi cách lấy m lá thư từ 4 lá, với mỗi cách lấy m lá thư, có (4 - m)! cách bỏ m lá thư này đúng địa chỉ, ta nhận được:
Suy ra xác suất cần tìm cho việc không lá thư nào đúng địa chỉ là
Vậy xác suất để có ít nhất 1 lá thư bỏ đúng phong bì của nó là P = 1 - P ¯ = 5 8 .