Một lăng trụ đứng có đáy là tam giác đều cạnh a, cạnh bên bằng b. Khi đó thể tích V của khối lăng trụ đó là
A. V = a 2 b 3 4 .
B. V = a 2 b 3 12 .
C. V = a 2 b 2 .
D. V = a b 2 3 4 .
Cho hình lăng trụ tam giác đều ABC.A′B′C′ có góc giữa hai mặt phẳng (A′BC) và (ABC) bằng 60 0 , cạnh AB = 2. Thể tích V của khối lăng trụ ABC.A′B′C′ là
A. 3 3 4
B. 3
C. 3
D. 3 3
Cho hình lăng trụ đứng ABC.A′B′C′ có đáy là tam giác đều cạnh a. Cạnh bên BB′=b. Thể tích của khối lăng trụ ABC.A′B′C′ là
A. a 3 b 3
B. a 2 b 3 4
C. a 2 b 3
D. a 3 b 3 3
Cho hình lăng trụ đứng ABCD.A′B′C′D′ có đáy là hình vuông cạnh bằng 4cm, đường chéo AB′ của mặt bên (ABB′A′) có độ dài bằng 5cm. Tính thể tích V của khối lăng trụ ABCD.A′B′C′D′.
A. 48 cm 3
B. 24 cm 3
C. 16 cm 3
D. 32 cm 3
Đáy của hình lăng trụ đứng tam giác ABC.A'B'C' là tam giác đều cạnh bằng 4 và diện tích tam giác A'BC bằng 8. Khi đó thể tích V của khối lăng trụ ABC.A'B'C' bằng bao nhiêu?
A. V = 2 3 .
B. V = 4 3 .
C. V = 6 3 .
D. V = 8 3 .
Cho lăng trụ ABC.A’B’C’ có đáy ABC là tam giác đều cạnh a, AA'=3a/2. Biết rằng hình chiếu vuông góc của A’ lên (ABC) là trung điểm BC. Tính thể tích V của khối lăng trụ đó
A. V= a 3
B. V= 2 a 3 3
C. V= 3 a 3 4 2
D. V= a 3 3 2
Một hình lăng trụ có đáy là tam giác đều cạnh a, cạnh bên bằng b và tạo với mặt phẳng đáy một góc α. Thể tích của lăng trụ đó là
A. 3 a 2 bsinα 12
B. 3 a 2 bcosα 12
C. 3 a 2 bcosα 4
D. 3 a 2 bsinα 4
Một hình lăng trụ có đáy là tam giác đều cạnh a, cạnh bên bằng b và tạo với mặt phẳng đáy một góc α. Thể tích của lăng trụ đó là
A. 3 a 2 b sin α 12
B. 3 a 2 b cos α 4
C. 3 a 2 b sin α 4
D. 3 a 2 b cos α 12
Cho khối lăng trụ tam giác đều ABC.A'B'C' có cạnh đáy bằng a, cạnh bên bằng 2a. Tính thể tích V của lăng trụ ABC.A'B'C'
A. V = a 3 3 2
B. V = a 3 3 6
C. V = a 3 3
D. V = 2 a 3 3