Một khối nón và một khối trụ có chiều cao và bán kính đáy đều bằng 1. Tổng thể tích của khối nón và khối trụ đó là
A. 2 π 3
B. 4 π 3
C. 10 π 3
D. 4 π
Một khối nón và một khối trụ có chiều cao và bán kính đáy đều bằng 1. Tổng thể tích của khối nón và khối trụ đó bằng
A. 4 π 3
B. 10 π 3
C. 4 π
D. 2 π 3
Cho hình nón có chiều cao h, đường tròn đáy có bán kính R. Một mặt phẳng (P) di động song song với đáy hình nón cắt hình nón theo đường tròn giao tuyến (L) Dựng hình trụ có một đáy là đường tròn (L) một đáy nằm trên đáy hình nón có trục là trục của hình nón. Gọi x là chiều cao của hình trụ, giá trị của x để hình trụ có thể tích lớn nhất
A. x = h 2
B. x = h 3
C. x = h 4
D. x= h
Một người thợ có một khối đá hình trụ có bán kính đáy bằng 30cm. Kẻ hai đường kính MN, PQ của hai đáy sao cho . Người thợ đó cắt khối đá theo các mặt cắt đi qua ba trong bốn điểm M, N, P,Q để được một khối đá có hình tứ diện (như hình vẽ dưới). Biết rằng khối tứ diện MNPQ có thể tích bằng . Thể tích của lượng đá bị cắt bỏ gần với kết quả nào dưới đây nhất?
A. 111,40 d m 3
B. 111,39 d m 3
C. 111,30 d m 3
D. 111,35 d m 3
Cho khối cầu (S) tâm I, bán kính R không đổi. Một khối trụ thay đổi có chiều cao h và bán kính r nội tiếp khối cầu. Tính chiều cao h theo R sao cho thể tích của khối trụ lớn nhất.
Một hình trụ có bán kính đáy bằng với chiều cao của nó. Biết thể tích của khối trụ đó bằng 8π, tính chiều cao h của hình trụ
A. h = 4 3
B. h = 2
C. h = 2 2
D. h = 32 3
Trong các khối trụ có thể tích V không đổi thì hình trụ có diện tích toàn phần lớn nhất khi tỉ lệ giữa chiều cac h và bán kính đáy R là:
A . h R = 1
B . h R = 2
C . h R = 2
C . h R = 1 2
Cho hình nón có độ dài đường kính đáy là 2R, độ dài đường sinh là R 17 và hình trụ có chiều cao và đường kính đáy đều bằng 2R, lồng vào nhau như hình vẽ bên. Tính thể tích phần khối trụ không giao với khối nón
Khi cắt mặt cầu S (O; R) bởi một mặt kính đi qua tâm O, ta được hai nửa mặt cầu giống nhau. Giao tuyến của mặt kính đó với mặt cầu gọi là mặt đáy của mỗi nửa mặt cầu. Một hình trụ gọi là nội tiếp nửa mặt cầu S (O; R) nếu một đáy của hình trụ nằm trong đáy của nửa mặt cầu, còn đường tròn đáy kia là giao tuyến của hình trụ với nửa mặt cầu. Biết R = 1, tính bán kính đáy r và chiều cao h của hình trụ nội tiếp nửa mặt cầu S(O; R) để khối trụ có thể tích lớn nhất.