Một hình trụ có bán kính r và chiều cao h = r√3.
a) Tính diện tích xung quanh và diện tích toàn phần của hình trụ.
b) TÍnh thể tích khối trụ tạo nên bởi hình trụ đã cho.
c) Cho hai điểm A và B lần lượt nằm trên hai đường tròn đáy sao cho góc giữa đường thẳng AB và trục của hình trụ bằng 300. TÍnh khoảng cách giữa đường thẳng AB và trục của hình trụ
Cho mặt cầu (S) có bán kính R = a 3 . Gọi (T) là hình trụ có hai đường tròn đáy nằm trên (S) và diện tích thiết diện qua trục của hình trụ (T) là lớn nhất. Tính diện tích toàn phần S t p của (T).
A. S t p = 9 π a 2 .
B. S t p = 9 π a 2 3 .
C. S t p = 6 π a 2 3 .
D. S t p = 6 π a 2
Gọi l, h, R lần lượt là độ dài đường sinh, chiều cao và bán kính đáy của hình trụ (T). Diện tích toàn phần tp S t p của hình trụ (T) là
A. S t p = π R l + π R 2
B. S t p = π R l + 2 π R 2
C. S t p = 2 π R l + 2 π R 2
D. S t p = π R h + π R 2
Cho hình trụ (T) có bán kính đáy R, trục OO’ bằng 2R và mặt cầu (S) có đường kính là OO’. Gọi S1 là diện tích mặt cẩu (S), S2 là diện tích toàn phần của hình trụ (T). Khi đó S 1 s 2 bằng?
A.2/3
B. 1/6
C. 1
D. 3/2
Hình trụ có bán kính đáy r. Gọi O và O' là tâm của hai đường tròn đáy, với O O ' = 2 r . Một mặt cầu (S ) tiếp xúc với hai đáy hình trụ tại O và O'. Gọi VC và VT lần lượt là thể tích khối cầu và khối trụ tương ứng. Khi đó V C V T bằng:
A. 1/2
B. 3/4
C. 2/3
D. 3/5
Cho hình trụ T có chiều cao bằng đường kính đáy, hai đáy là các hình tròn O ; r và O ' ; r . Gọi A là điểm di động trên đường tròn O ; r v à B là điểm di động trên đường tròn O ' ; r sao cho AB không là đường sinh của hình trụ T . Khi thể tích khối tứ diện O O ' A B đạt giá trị lớn nhất thì đoạn thẳng AB có độ dài bằng
A. 3 r
B. 2 + 2 r
C. 6 r
D. 5 r
Khi cắt mặt cầu S (O, R) bởi một mặt kính đi qua tâm O, ta được hai nửa mặt cầu giống nhau. Giao tuyến của mặt kính đó với mặt cầu gọi là mặt đáy của mỗi nửa mặt cầu. Một hình trụ gọi là nội tiếp nửa mặt cầu S (O, R) nếu một đáy của hình trụ nằm trong đáy của nửa mặt cầu, còn đường tròn đáy kia là giao tuyến của hình trụ với nửa mặt cầu. Biết R = 1, tính bán kính đáy r và chiều cao h của hình trụ nội tiếp nửa mặt cầu S (O, R) để khối trụ có thể tích lớn nhất.
A. r = 3 2 ; h = 6 2
B. r = 6 2 ; h = 3 2
C. r = 6 3 ; h = 3 3
D. r = 3 3 ; h = 6 3
Gọi l, h, R lần lượt là độ dài đường sinh, chiều cao và bán kính đáy của hình trụ (T). Diện tích xung quanh S x q của hình trụ (T) là
A. S x q = π R l
B. S x q = π R h
C. S x q = 2 π R l
D. S x q = π R 2 h
Gọi l;h;R lần lượt là độ dài đường sinh, chiều cao và bán kính đáy của hình trụ (T). Diện tích xung quanh S x q của hình trụ (T)là
A. S x q = 2 π R l
B. S x q = π R h
C. S x q = π R l
D. S x q = π R 2 h