Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, cạnh bên hợp với đáy một góc 60 ° . Gọi M là điểm đối xứng với C qua D; N là trung điểm của SC, mặt phẳng ( BMN) chia khối chóp S.ABCD thành hai phân. Tính tỉ số thể tích giữa hai phần đó
A. 1 5
B. 7 3 .
C. 1 7
D. 7 5
Cho hình chóp đều S.ABCD có độ dài cạnh đáy bằng a. Gọi G là trọng tâm tam giác SAC . Mặt phẳng chứa AB và đi qua G cắt các cạnh SC, SD lần lượt tại M và N. Biết mặt bên của hình chóp tạo với đáy một góc bằng 60 ° . Thể tích khối chóp S.ABMN bằng
A. a 3 3 4
B. a 3 3 8
C. a 3 3 16
D. 3 a 3 3 16
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng 2a góc giữa mặt bên và mặt đáy bằng 60 ° . Gọi M, N lần lượt là trung điểm của các cạnh cạnh SD,DC. Thể tích khối tứ diện ACMN là
A. a 3 2 4
B. a 3 8
C. a 3 3 6
D. a 3 2 2
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng 2a, góc giữa mặt bên và mặt đáy bằng 60 0 . Gọi M, N lần lượt là trung điểm của các cạnh cạnh SD, DC. Thể tích khối tứ diện ACMN là
A. a 3 2 4 .
B. a 3 8 .
C. a 3 3 6 .
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, cạnh bên SA vuông góc với mặt phẳng (ABCD). Góc giữa hai mặt phẳng (SBD) và (ABCD) bằng 60 ° . Gọi M, N lần lượt là trung điểm của các cạnh SB, SC. Thể tích khối chóp S.ADNM bằng
A. 6 8 a 3
B. 3 6 16 a 3
C. 6 16 a 3
D. 6 24 a 3
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, A B C ^ = 60 ° . Mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt đáy. Gọi M và N lần lượt là trung điểm của các cạnh AB, CD. Khoảng cách giữa hai đường thẳng CM và SN bằng
A. a 3 4
B. 3 a 2 2
C. a 3 2
D. 3 a 2
Cho khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a, góc giữa cạnh bên và mặt phẳng đáy bằng 60 ° Gọi M là điểm đối xứng vưới C qua D và N là trung điểm của cạnh SC. Mặt phẳng (BMN) chia khối chóp S.ABCD thành hai khối đa diện H 1 và H 2 trong đó H 1 chứa điểm C. Thể tích của khối là
A. 7 6 a 3 72
B. 5 6 a 3 72
C. 5 6 a 3 36
D. 7 6 a 3 36
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng 2a, góc giữa mặt bên và mặt đáy bằng 60 ° Gọi M, N lần lượt là trung điểm của các cạnh SD, DC. Thể tích khối tứ diện ACMN là
A. a 3 8 .
B. a 3 2 2 .
C. a 3 3 6 .
D. a 3 2 4 .
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a tam giác SAD đều và nằm trong mặt phẳng vuông góc với mặt đáy. Gọi M là trung điểm của SB, N là trung điểm CD Khoảng cách giữa 2 đường thẳng AM và BN bằng
A. a 3 10
B. a 3 0 10
C. a 7 10
D. a 17 10