Đáp án C
Phương pháp
Công thức tổng quát của CSN có số hạng đầu là u 1
và công bội q : u n = u 1 q n - 1
Tổng của n số hạng đầu của CSN có số hạng đầu là u 1
và công bội q : S n = u 1 ( q n - 1 ) q - 1
Cách giải:
Ta có:
⇔ 2 n = 256 ⇔ n = 8
Đáp án C
Phương pháp
Công thức tổng quát của CSN có số hạng đầu là u 1
và công bội q : u n = u 1 q n - 1
Tổng của n số hạng đầu của CSN có số hạng đầu là u 1
và công bội q : S n = u 1 ( q n - 1 ) q - 1
Cách giải:
Ta có:
⇔ 2 n = 256 ⇔ n = 8
Một cấp số nhân có số hạng đầu u 1 = 3 , công bội q = 2 . Biết S n = 765 . Tìm n ?
A. n = 7.
B. n = 6.
C. n = 8.
D. n = 9.
Một cấp số nhân có số hạng đấu u 1 = 3 công bội q = 2 . Biết S n = 765 . Tìm n
A. 8
B. 6
C. 7
D. 9
Một cấp số cộng có tổng của n số hạng đầu S n tính theo công thức S n = 5 n 2 + 3 n , ( n ∈ ℕ * ) . Tìm số hạng đầu u 1 và công sai d của cấp số cộng đó
A. u 1 = - 8 ; d = 10 .
B. u 1 = - 8 ; d = - 10 .
C. u 1 = 8 ; d = 10 .
D. u 1 = 8 ; d = - 10 .
Cho dãy số u 1 = 1 3 u n + 1 = n + 1 u n 3 n v ớ i n ≥ 1
a) Viết năm số hạng đầu của dãy số.
b) Lập dãy số ( v n ) với v n = u n n . Chứng minh dãy số ( v n ) là cấp số nhân.
c) Tìm công thức tính ( u n ) theo n.
Cho cấp số cộng (un) có số hạng đầu là u1 = 1 và công sai d = 1. Tìm n sao cho tổng của n số hạng đầu tiên của cấp số cộng đó bằng 3003.
A. n = 79
B. n = 78
C. n = 77
D. n = 80
Ba số phân biệt có tổng 217, là các số hạng liên tiếp của một cấp số nhân, theo thứ tự đó chúng lần lượt là số hạng thứ 2, thứ 9 và thứ 44 của một cấp số cộng. Biết tổng của n số hạng đầu tiên của cấp số cộng là 820, khi đó n bằng
A. 21
B. 42
C.20
D. 17
Bài 1: Cho cấp số nhân có: u3 = 18 và u6 = -486.
Tìm số hạng đầu tiên và công bội q của cấp số nhân đó
Bài 2: Tìm u và q của cấp số nhân (un) biết:
Bài 3: Tìm cấp số nhân (un) biết cấp số đó có 4 số hạng có tổng bằng 360 và số hạng cuối gấp 9 lần số hạng thứ hai.
Một cấp số nhân dương có 4 số hạng, công bội q bằng 1/4 lần số hạng thứ nhất, tổng của hai số hạng đầu bằng 24. Tìm tích các số hạng cấp số nhân đó?
A. 2
B. 1
C. 4096
D. 262144