\(B5:A=2x^2-y^2+x+\dfrac{1}{x}+1\)
\(x+y=1\Rightarrow y=1-x\)
\(\Rightarrow A=2x^2-\left(x-1\right)^2+x+\dfrac{1}{x}+1=x^2+3x+\dfrac{1}{x}\)
\(=x^2+\dfrac{1}{8x}+\dfrac{1}{8x}+\dfrac{6}{8x}+3x\ge3\sqrt[3]{x^2.\dfrac{1}{8x}.\dfrac{1}{8x}}+2\sqrt{\dfrac{6}{8x}.3x}=3\sqrt[3]{\dfrac{1}{64}}+2\sqrt{\dfrac{6.3}{8}}=\dfrac{15}{4}\)
\(dấu"="xảy\) \(ra\Leftrightarrow x=y=\dfrac{1}{2}\)

