\(1:x< 0\left(B\right)\)
\(2:\left(D\right)\)
\(3:x< 2021\left(C\right)\)
\(4:x\ge15\left(D\right)\)
\(5:\)để pt có nghĩa thì 2x-5>0
\(2x>5< =>x>\frac{5}{2}\)
chọn (C)
\(6:\frac{1}{2}\sqrt{20}-\sqrt{\left(2-\sqrt{5}\right)^2}\)
\(\frac{1}{2}\sqrt{20}-\sqrt{5}+2\)
\(\sqrt{5}-\sqrt{5}+2=2\)
chọn (B)
\(7:\frac{6xy^2}{x^2-y^2}\sqrt{\frac{\left(x-y\right)^2}{\left(3xy^2\right)^2}}\)
\(\frac{6xy^2}{x^2-y^2}\frac{x-y}{3xy^2}\)
\(\frac{2}{x+y}\)
chọn (B)
\(8:\left(1+\frac{3-\sqrt{3}}{\sqrt{3}-1}\right)\left(\frac{3+\sqrt{3}}{\sqrt{3}+1}-1\right)\)
\(\left(1+\frac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}\right)\left(\frac{\sqrt{3}\left(\sqrt{3}+1\right)}{\sqrt{3}+1}-1\right)\)
\(\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)\)
\(\sqrt{3}^2-1^2=3-1=2\)
chọn (D)
\(9:M=\left|1-\sqrt{3}\right|+\left|1-\sqrt{3}\right|\)
\(M=\sqrt{3}-1+\sqrt{3}-1\)
\(M=2\sqrt{3}-2\)
chọn (A)
\(10:\sqrt{4+\sqrt{x^2-1}}=2\)
\(4+\sqrt{x^2-1}=2^2=4\)
\(\sqrt{x^2-1}=0\)
\(x^2-1=0< =>x=1\)
chọn (A)
1 B
2 D
3 C
4 D
5 C
6 B
7 B
8 D
9 D
10 B