Bài 3.1
a) Ta có: \(\dfrac{1}{2}x^2\cdot\left(-2x^2y^2z\right)\cdot\dfrac{-1}{3}x^2y^3\)
\(=\left(\dfrac{1}{2}\cdot2\cdot\dfrac{1}{3}\right)\cdot\left(x^2\cdot x^2\cdot x^2\right)\cdot\left(y^2\cdot y^3\right)\cdot z\)
\(=\dfrac{1}{3}x^6y^5z\)
Bài 3.1
b) Ta có: \(\left(-x^2y\right)^3\cdot\dfrac{1}{2}x^2y^3\cdot\left(-2xy^2z\right)^2\)
\(=-x^6y^3\cdot\dfrac{1}{2}x^2y^3\cdot4x^2y^4z^2\)
\(=\left(\dfrac{1}{2}\cdot4\right)\cdot\left(-x^6\cdot x^2\cdot x^2\right)\cdot\left(y^3\cdot y^3\cdot y^4\right)\cdot z^2\)
\(=-2x^{10}y^{10}z^2\)
Bài 3.2
a) Ta có: \(\left(-6x^3yz\right)\cdot\left(\dfrac{2}{3}yx^2\right)^2\)
\(=-6x^3yz\cdot\dfrac{4}{9}x^4y^2\)
\(=\dfrac{-8}{3}x^7y^3z\)
Bài 3.2
b) Ta có: \(\left(xy-5x^2y^2+xy^2-xy^2\right)-\left(x^2y^2+3xy^2-9x^2y\right)\)
\(=xy-5x^2y^2-x^2y^2-3xy^2+9x^2y\)
\(=xy-6x^2y^2-3xy^2+9x^2y\)
Bài 3.3
a) Ta có: \(A=\left(\dfrac{-3}{7}x^2y^2z\right)\cdot\left(\dfrac{-42}{9}xy^2z^2\right)\)
\(=\left(\dfrac{3}{7}\cdot\dfrac{42}{9}\right)\cdot\left(x^2\cdot x\right)\cdot\left(y^2\cdot y^2\right)\cdot\left(z\cdot z^3\right)\)
\(=2x^3y^4z^4\)
Bài 3.3
b) Hệ số là 2
Bậc là 11
Bài 3.3
c) Thay x=2; y=1 và z=-1 vào A, ta được:
\(A=2\cdot2^3\cdot1^4\cdot\left(-1\right)^4=2\cdot8=16\)