\(\hept{\begin{cases}a^3+b^3=9\left(1\right)\\a^2+2b^2=a+4b\left(2\right)\end{cases}}\)
Lấy \(\left(1\right)-3\left(2\right)\)
Ta có \(\left(a^3-3a^2+3a-1\right)+\left(b^3-6b^2+12b-8\right)=0\)
<=> \(\left(a-1\right)^3=-\left(b-2\right)^3\)
<=> \(a+b=3\)
Thay vào (1) ta được
\(\left(3-a\right)^3+a^3=9\)
=> \(\orbr{\begin{cases}a=2\Rightarrow b=1\\a=1\Rightarrow a=2\end{cases}}\)
Vậy \(\left(a,b\right)=\left(2,1\right);\left(1,2\right)\)