a: Ta có: \(AN=NB=\dfrac{AB}{2}\)
\(AM=MC=\dfrac{AC}{2}\)
mà AB=AC
nên AN=NB=AM=MC
Xét ΔNBC và ΔMCB có
NB=MC
\(\widehat{NBC}=\widehat{MCB}\)(ΔABC cân tại A)
BC chung
Do đó: ΔNBC=ΔMCB
b: Xét ΔABC có
AD,BM,CN là các đường trung tuyến
AD,BM,CN đồng quy tại G
Do đó: G là trọng tâm của ΔABC
=>\(AG=2GD\)
mà AG=GE
nên GE=2GD
=>D là trung điểm của GE
=>DG=DE
c: Ta có: ΔABC cân tại A
mà AD là đường trung tuyến
nên AD\(\perp\)BC
Xét ΔCGE có
CD là đường cao
CD là đường trung tuyến
Do đó: ΔCGE cân tại C
d: Xét ΔABC có
BM là đường trung tuyến
G là trọng tâm
Do đó: \(BG=\dfrac{2}{3}BM=10\left(cm\right)\)
D là trung điểm của BC
=>DB=DC=BC/2=8(cm)
ΔGDB vuông tại D
=>\(GD^2+DB^2=GB^2\)
=>\(GD^2=10^2-8^2=36\)
=>\(GD=\sqrt{36}=6\left(cm\right)\)
\(\Leftrightarrow AG=2\cdot GD=12\left(cm\right)\)