Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lee Yeong Ji

mn giúp em câu c và d với ạ!!

undefined

Akai Haruma
7 tháng 7 2021 lúc 11:05

$A=x-3\sqrt{x}+1=(x-3\sqrt{x}+\frac{9}{4})-\frac{5}{4}$

$=(\sqrt{x}-\frac{3}{2})^2-\frac{5}{4}$

$\geq \frac{-5}{4}$

Vậy $A_{\min}=-\frac{5}{4}$. Giá trị này đạt tại $\sqrt{x}-\frac{3}{2}=0\Leftrightarrow x=\frac{9}{4}$

----------------

$B=\frac{3\sqrt{x}-1}{\sqrt{x}+2}=3-\frac{5}{\sqrt{x}+2}$

Vì $\sqrt{x}\geq 0$ nên $\sqrt{x}+2\geq 2$

$\Rightarrow \frac{5}{\sqrt{x}+2}\leq \frac{5}{2}$
$\Rightarrow B\geq 3-\frac{5}{2}=\frac{1}{2}$

Vậy $B_{\min}=\frac{1}{2}$ khi $x=0$

 

Akai Haruma
7 tháng 7 2021 lúc 11:12

$C=\frac{\sqrt{x}(\sqrt{x}+3)-3(\sqrt{x}+3)+19}{\sqrt{x}+3}$

$=\sqrt{x}-3+\frac{19}{\sqrt{x}+3}$

$=(\sqrt{x}+3)+\frac{19}{\sqrt{x}+3}-6$

$\geq 2\sqrt{19}-6$ theo BĐT Cô-si

Dấu "=" xảy ra khi $(\sqrt{x}+3)^2=19\Leftrightarrow x=28-6\sqrt{19}$

 

Akai Haruma
7 tháng 7 2021 lúc 11:16

$D=\frac{\sqrt{x}(\sqrt{x}-1)-2(\sqrt{x}-1)+1}{\sqrt{x}-1}$

$=\sqrt{x}-2+\frac{1}{\sqrt{x}-1}$

$=(\sqrt{x}-1)+\frac{1}{\sqrt{x}-1}-1$

$\geq 2-1=1$ theo BĐT Cô-si

Vậy $D_{\min}=1$. Dấu "=" xảy ra khi $(\sqrt{x}-1)^2=1$
$\Leftrightarrow x=4$


Các câu hỏi tương tự
Ha Thu
Xem chi tiết
Ha Thu
Xem chi tiết
Lê Minh Ngọc
Xem chi tiết
Lâm Đỗ
Xem chi tiết
Levi Ackerman
Xem chi tiết
{何もない}
Xem chi tiết
Trần Lê Vy
Xem chi tiết
ArcherJumble
Xem chi tiết
18. Ngô Thị Ái Ngọc
Xem chi tiết