Đặt \(A=\dfrac{1}{\sqrt[3]{a+7b}}+\dfrac{1}{\sqrt[3]{b+7c}}+\dfrac{1}{\sqrt[3]{c+7a}}\)
\(A=\dfrac{\sqrt[3]{64}}{\sqrt[3]{8.8\left(a+7b\right)}}+\dfrac{\sqrt[3]{64}}{\sqrt[3]{8.8\left(b+7c\right)}}+\dfrac{\sqrt[3]{64}}{\sqrt[3]{8.8\left(c+7a\right)}}\)
\(\ge\dfrac{4}{\dfrac{8+8+a+7b}{3}}+\dfrac{4}{\dfrac{8+8+b+7c}{3}}+\dfrac{4}{\dfrac{8+8+c+7a}{3}}\ge\dfrac{\left(2+2+2\right)^2}{\dfrac{8+8+a+7b+8+8+b+7c+8+8+c+7a}{3}}\)
\(=\dfrac{36.3}{8\left(a+b+c\right)+48}=\dfrac{3}{2}\)
Vậy \(A_{min}=\dfrac{3}{2}\Leftrightarrow a=b=c=1\)