a+b+c+d=0
=>a+b=-(c+d)
=> (a+b)^3=-(c+d)^3
=> a^3+b^3+3ab(a+b)=-c^3-d^3-3cd(c+d)
=> a^3+b^3+c^3+d^3=-3ab(a+b)-3cd(c+d)
=> a^3+b^3+c^3+d^3=3ab(c+d)-3cd(c+d) ( vi a+b = - (c+d))
==> a^3 +b^^3+c^3+d^3==3(c+d)(ab-cd) (dpcm)
a+b+c+d=0
=>a+b=-(c+d)
=> (a+b)^3=-(c+d)^3
=> a^3+b^3+3ab(a+b)=-c^3-d^3-3cd(c+d)
=> a^3+b^3+c^3+d^3=-3ab(a+b)-3cd(c+d)
=> a^3+b^3+c^3+d^3=3ab(c+d)-3cd(c+d) ( vi a+b = - (c+d))
==> a^3 +b^^3+c^3+d^3==3(c+d)(ab-cd) (dpcm)
Chứng minh các hằng đẳng thức sau:
a) (a2+b2)(c2+d2)=(ac+bd)2+(ad-bc)2
b) (a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)
(1) (a+b+c)2=a2+b2+c2+2ab+2bc+2ac(a+b+c)2=a2+b2+c2+2ab+2bc+2ac
(2) (a+b−c)2=a2+b2+c2+2ab−2bc−2ac(a+b−c)2=a2+b2+c2+2ab−2bc−2ac
(3) (a−b−c)2=a2+b2+c2−2ab−2ac+2bc(a−b−c)2=a2+b2+c2−2ab−2ac+2bc
(4) a3+b3=(a+b)3−3ab(a+b)a3+b3=(a+b)3−3ab(a+b)
(5) a3−b3=(a−b)3+3ab(a−b)a3−b3=(a−b)3+3ab(a−b)
(6) (a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)(a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)
(7) a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ac)a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ac)
(8) (a−b)3+(b−c)3+(c−a)3=3(a−b)(b−c)(c−a)(a−b)3+(b−c)3+(c−a)3=3(a−b)(b−c)(c−a)
(9) (a+b)(b+c)(c+a)−8abc=a(b−c)2+b(c−a)2+c(a−b)2(a+b)(b+c)(c+a)−8abc=a(b−c)2+b(c−a)2+c(a−b)2
(10) (a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)−abc(a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)−abc
(11) ab2+bc2+ca2−a2b−b2c−c2a=(a−b)3+(b−c)3+(c−a)33ab2+bc2+ca2−a2b−b2c−c2a=(a−b)3+(b−c)3+(c−a)33
(12)ab3+bc3+ca3−a3b−b3c−c3a=(a+b+c)[(a−b)3+(b−c)3+(c−a)3]3ab3+bc3+ca3−a3b−b3c−c3a=(a+b+c)[(a−b)3+(b−c)3+(c−a)3]3
Chứng minh giùm mik hằng đẳng thức kia vs
2. Chứng minh rằng:
a. a3+ b3 = (a + b)3 - 3ab (a + b)
b. a3+ b3 + c3 - 3abc = (a + b + c) (a2 + b2 c2 - ab - bc - ca)
cho a,b,c là độ dài 3 cạnh của tam giác , chứng minh :
a3+b3+c3+2abc < a(b2+c2)+b(a2+c2)+c(a2+b2) < a3+b3+c3+3abc
mình cần gấp lắm , mn giúp mình với
Bài 8. Chứng minh các đẳng thức sau: a) (a + b + c)2 + a2 + b2 + c2 = (a + b)2 +(b + c)2 + (c + a)2; b) (a + b + c)3 - a3 - b3 - c3 = 3(a + b)(b + c)(c + a).
Cho a + b + c = 0. Chứng minh : (a2 + b2 + c2 )/2 * (a3 + b3 + c3 )/3 = (a5 + b5 + c5 )/5
Chứng minh hằng đẳng thức: a + b + c 3 = a 3 + b 3 + c 3 + 3(a+b)(b+c)(c+a)
Cho a 3 + b 3 + c 3 = 3 a b c và a + b + c ≠ 0.Tính giá trị của biểu thức A = a 2 + b 2 + c 2 ( a + b + c ) 2
Cho a+b+c+d=0. CMR: a3+b3+c3+d3=3(c+d)(ab-cd)