Miền nghiệm của hệ bất phương trình \(\left[{}\begin{matrix}-x+4y>0\\-2x+y< 0\\x+3y< 7\\x< 3\end{matrix}\right.\) là
A. Một nửa mặt phẳng
B, Miền tam giác
C, Miền tứ giác
D. Miền ngũ giác
Biểu diễn miền nghiệm của hệ bất phương trình sau trên mặt phẳng tọa độ:
\(\left\{{}\begin{matrix}y-x< -1\\x>0\\y< 0\\\end{matrix}\right.\)
Gi á trị nhỏ nhất của biểu thức F( x;y ) = y - x thuộc miền nghiệm của hệ bất phương trình
\(\left\{{}\begin{matrix}y-2x\le2\\2y-x\ge4\\x+y\le5\end{matrix}\right.\) là
Gi ải các điểm A, B, C, D miền nghiệm của hệ bất phương trình \(\left[{}\begin{matrix}2x+3y-6< 0\\x\ge0\\2x-3y-1\le0\end{matrix}\right.\)
Bài 2 (1 điểm)
a) Biểu diễn miền nghiệm của hệ bpt $\left\{ \begin{aligned} & x\ge 0 \\ & 0\le y\le 4 \\ & x+y\le 7 \\ & x+3y\le 15 \\ \end{aligned} \right.$.
b) Có ba nhóm máy A, B, C dùng để sản xuất ra hai loại sản phẩm I và II. Để sản xuất một sản phẩm loại I cần dùng $1$ máy nhóm A và $1$ máy nhóm B. Để sản xuất ra một sản phẩm loại $2$ cần dùng $1$ máy nhóm A, $3$ máy nhóm B và $2$ máy nhóm C. Nhà máy có $7$ máy nhóm A, $15$ máy nhóm B, $8$ máy nhóm C. Biết một sản phẩm loại I lãi $10$ nghìn đồng, một sản phẩm loại II lãi $15$ nghìn đồng. Hãy lập phương án để việc sản xuất hai loại sản phẩm trên có lãi là cao nhất.
Trong các khẳng định sau, khẳng định nào đúng?
A. Hình 45 (miền không bị gạch, kể cả biên) biểu diễn miền nghiệm của bất phương trình x + y ≤ 2.
B. Hình 45 (miền không bị gạch, kể cả biên) biểu diễn miền nghiệm của bất phương trình
và (x; y) = (-1; 1) là một nghiệm của hệ.
C. Hình 45 (miền không bị gạch, kể cả biên) biểu diễn miền nghiệm của bất phương trình và (x; y) = (-2; 1) là một nghiệm của hệ.
D. Hình 45 (miền không bị gạch, kể cả biên) biểu diễn miền nghiệm của bất phương trình và (x; y) = (1; 0) là một nghiệm của hệ.
tìm m để hệ phương trình có nghiệm duy nhất
\(\left\{{}\begin{matrix}x+y+xy=3\\x^2+y^2+3\left(x+y\right)=m\end{matrix}\right.\)
Cho bất phương trình bậc nhất hai ẩn: -3x + y < 4
a) Biểu diễn miền nghiệm của hệ bất phương trình đã cho trên mặt phẳng tọa độ
b) Từ đó suy ra miền nghiệm của bất phương trình -3x + y \(\le4\)
tìm m ϵ Z để hệ phương trình sau có nghiệm nguyên
a) \(\left\{{}\begin{matrix}mx-y=1\\x+4\left(m+1\right)y=4m\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\left(m+1\right)x+\left(3m+1\right)y=2-m\\2x+\left(m+2\right)y=4\end{matrix}\right.\)