bn chú ý ng ta noi ( la sô nguyen) thi duong nhien tử phai chia hêt cho mẫu;
m2 -n2 :het mn là phai rùi
=> n2 : het cho m thi bn tach tu thành 2 ps giàn uoc la biet liên
( em chi hoc lop6 nghe anh nhưng k bao gio sai)
bn chú ý ng ta noi ( la sô nguyen) thi duong nhien tử phai chia hêt cho mẫu;
m2 -n2 :het mn là phai rùi
=> n2 : het cho m thi bn tach tu thành 2 ps giàn uoc la biet liên
( em chi hoc lop6 nghe anh nhưng k bao gio sai)
Cho m, n số nguyên dương, m2 + n2 + m chia hết cho mn. CMR m là số chính phương
cho m n là số tự nhiên thỏa mãn m2-2020n2+2022 chia hết cho m,n chứng minh rằng m,n là hai số lẻ và nguyên tố cùng nhau
Giải (copy)
Nếu m,n là 2 số chẵn thì m2- 2023n2+ 2022 không chia hết cho 4 và mn chia hết cho 4 suy ra m2-2023n2+2022 không chia hết cho mn (loại)
nếu m,n khác tính chẵn lẻ thì m2- 2023n2+ 2022 lẻ và mn chẵn do đó m2-2023n2+2022 không chia hết cho mn (loại)
Vậy m,n là những số lẻ
Gọi (m,n) = d => m2- 2023n2 ⋮ d2 ; mn ⋮ d2 mà m2- 2023n2 + 2022 ⋮ mn nên 2022 ⋮ d2
Mặt khác 2022 = 2.3.337 tức 2022 không có ước chính phương nào ngoài 1 do đó d2 = 1 => d = 1 => (m,n) =1 vậy m,n là hai số nguyên tố cùng nhau .
Em chưa hiểu tai sao
Nếu m,n là 2 số chẵn thì m2- 2023n2+ 2022 không chia hết cho 4
thầy Cao Lộc phân tích cho em với ạ
Chứng minh m, n là số nguyên ta có:
b. mn(m^2 - n^2) chia hết cho 6
c. n(n+1)(2n+1) chia hết cho 6
Chứng minh rằng với mọi số nguyên m và n ta có 4mn(m^2 – n^2) chia hết cho 24
làm ntn z mn
Giúp mình giải bài tập tin học vs ạ....
Mình biết đây là trang giải toán nhưng mình chả biết có trang web nào uy tín hơn cả... :P
Bạn hãy chia N2 số 1, 2, 3, ...., N2-1, N2 thành N nhóm sao cho mỗi nhóm có số các số hạng như nhau và có tổng các số này cũng bằng nhau.
Chứng minh với mọi số m,n thuộc Z, ta có: mn(m2-n2) chia hết cho 6.
cho biểu thức
M=\(\frac{2\sqrt{a}+3\sqrt{a}}{\sqrt{ab}+2\sqrt{a}-3\sqrt{a}-6}-\frac{6-\sqrt{ab}}{\sqrt{ab}+2\sqrt{a}+3\sqrt{b}+6}\)
a) tìm đkxd
b) rút gọn
c) chứng minh rằng :nếu\(M=\frac{b+81}{b-81}\)khi đó \(\frac{a}{b}\)là mottj số nguyên chia hết cho 3
các bn giúp mink với mink cần gấp
1,cho a và b là hai số tự nhiên nguyê tố cùng nhau với 3 và a+b chia hết cho 3. chứng minh rằng xa +xb+1 chia hết cho x2+x+1
2,cho f(x) là đa thức bậc lớn hơn 1 có các hệ số nguyên, m và n là hai số nguyên tố cùng nhau, chứng minh rằng
f( m+n) chia hết cho mn <=> f(m) chia hết cho n và f(n) chia hết cho m
ai làm hộ mik đi... nhanh dùm với các chế
Chứng minh rằng nếu số nguyên n lớn hơn 1 thoả mãn n2 + 4 và n2 +16 là các số nguyên tố thì n chia hết cho 5.