Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(2;-1;-2) và đường thẳng d có phương trình x - 1 1 = y - 1 - 1 = z - 1 1 . Gọi (P) là mặt phẳng đi qua điểm A, song song với đường thẳng d và khoảng cách từ đường thẳng d tới mặt phẳng (P) là lớn nhất. Khi đó, mặt phẳng (P) vuông góc với mặt phẳng nào sau đây?
![]()
![]()
![]()
![]()
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d: x - 1 2 = y - 1 = z + 2 3 và điểm A(1;0;0).
Mặt phẳng (P) đi qua điểm A và vuông góc với đường thẳng d có phương trình là
A. z - 2z - 1 = 0
B. x + y - z - 1 = 0
C. 2x - y + 3z - 2 = 0
D. 2x + y + 3z - 2 = 0
Trong không gian Oxyz, cho đường thẳng d : x + 1 2 = y - 1 1 = z - 2 3 và mặt phẳng (P):x-y-z-1=0. Phương trình đường thẳng Δ đi qua A (1;1;-2), song song với mặt phẳng (P) và vuông góc với đường thẳng d là:
![]()
![]()
![]()

Trong không gian Oxyz cho đường thẳng
d: x - 1 2 = y - 2 - 1 = z - 3 1 và mặt phẳng
(P): 2x +y +z+ 1 = 0. Phương trình đường
thẳng qua giao điểm của đường thẳng (d)
với (P), nằm trên mặt phẳng (P) và vuông
góc với đường thẳng d là.




Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x-y-z-1=0 và cho đường thẳng d : x + 1 2 = y - 1 1 = z - 2 3 cho A(1;1;-2) Đường thẳng đi qua A, song song với (P) và vuông góc với d có phương trình là



![]()
Mặt phẳng đi qua điểm A(1;1;1) và vuông
góc với hai mặt phẳng x + y - z -2 = 0,
x + y + z - 1 = 0 có phương trình là
![]()
![]()
![]()
![]()
Cho mặt phẳng ( α ) : 2x + y + z – 1 = 0 và đường thẳng d: x - 1 2 = y 1 = z + 1 - 3
Gọi M là giao điểm của d và ( α ), hãy viết phương trình của đường thẳng ∆ đi qua M vuông góc với d và nằm trong ( α )
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d: x - 1 2 = y + 1 1 = z - 3 2 và điểm A(0;-2;-2) Mặt phẳng (P) đi qua điểm A và vuông góc với đường thẳng d có phương trình là
A. 2x + y - 2z + 4 = 0
B. 2x + y + 2z - 4 = 0
C. 2x + y - 2z - 4 = 0
D. 2x + y + 2z + 4 = 0
Lập phương trình mặt phẳng (P) đi qua điểm M(1; -3; 2) và vuông góc với đường thẳng d: x - 3 2 = y + 1 - 1 = z 3