tth_new

Mạnh mẽ hơn Nesbitt?

Với a, b, c là các số thực sao cho: \(a+b+c>0,\text{ }ab+bc+ca>0,\text{ }\left(a+b\right)\left(b+c\right)\left(c+a\right)>0\) thì:

\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}-\frac{3}{2}\ge\left(\Sigma ab\right)\left(\Sigma\frac{1}{\left(a+b\right)^2}\right)-\frac{9}{4}\)

Chứng minh: \(4\left(a+b+c\right)\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\cdot\left(\text{VT}-\text{VP}\right)\)

\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)\left[\Sigma\left(ab+bc-2ca\right)^2+\left(ab+bc+ca\right)\Sigma\left(a-b\right)^2\right]\)

\(+\left(a+b+c\right)\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2\ge0\)

tth_new
6 tháng 6 2020 lúc 6:30

Bất đẳng thức trên đúng với mọi số thực a, b, c. Ai có thể chứng minh?

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
tth_new
Xem chi tiết
tth_new
Xem chi tiết
Phan Nghĩa
Xem chi tiết
Lê Tài Bảo Châu
Xem chi tiết
Cù Hương Ly
Xem chi tiết
Đỗ Tùng
Xem chi tiết
huong dan
Xem chi tiết
Lê Ánh
Xem chi tiết
chickenpox
Xem chi tiết