M=x4 +2×x2+1 hãy chứng tỏ đa thức M ko có nghiệm
cho 2 da thuc
m(x)=3x3+x2+4x4-x-3x3+5x4+x2
n(x)=-x2-x4+4x3-x2-5x3+3x+1+x
a, thu gon va sap sep theo luy thua giam dan
b tinh m(x)+n(x) ; n(x)-m(x)
c dat p(x)=m(x)+n(x) tinh p (x)=-2
Cho hai đa thức
M(x) = x4 + 5x3 - x2 + x – 0,5
N(x) = 3x4 - 5x2 – x – 2,5.
Hãy tính M(x) + N(x) và M(x) – N(x).
Cho hai đa thức
M(x) = x4 + 5x3 - x2 + x – 0,5
N(x) = 3x4 - 5x2 – x – 2,5.
Hãy tính M(x) + N(x) và M(x) – N(x).
Câu 3. Cho 2 đa thức: M(x) = 3x3 + x2 + 4x4 – x – 3x3 + 5x4 + x2 – 6
N(x) = – x2 – x4 + 4x3 – x2 – 5x3 + 3x + 1 + x
a) Thu gọn và sắp xếp các đa thức trên theo luỹ thừa giảm dần của biến, tìm bậc, hệ
số cao nhất, hệ số tự do của đa thức M(x).
b) Tính P(x) = M(x) + N(x) ; Q(x) = M(x) – N(x)
c) Tính Q(x) tại x = –2.
d) Chứng minh đa thức H(x) = M(x) – 8x2 + x + 8 không có nghiệm
M(x) = 3x3 + x2 + 4x4 – x – 3x3 + 5x4 + 2x2 – 6
N(x) = - 2x2 – x4 + 4x3 – x2 -5x3 + 3x + 5 + x
a) Thu gọn và sắp xếp đa thức M(x), N(x) theo lũy thừa giảm của biến
b) Xác định hệ số cao nhất, hệ số tự do, bậc của các đa thức M(x), N(x).
c) Tính : M(x) + N(x)
d) Tính N(x) – M(x)
M(x) = 3x3 + x2 + 4x4 – x – 3x3 + 5x4 + 2x2 – 6
N(x) = - 2x2 – x4 + 4x3 – x2 -5x3 + 3x + 5 + x
a) Thu gọn và sắp xếp đa thức M(x), N(x) theo lũy thừa giảm của biến
b) Xác định hệ số cao nhất, hệ số tự do, bậc của các đa thức M(x), N(x).
c) Tính : M(x) + N(x)
d) Tính N(x) – M(x)
Cho (x2)^2=x1.x3;(x3)^2=x2.x4.Chứng minh rằng: (x1+x2+x3)^2/(x2+x3+x4)^2=x1^2+x2^2+x3^3/x2^2+x3^3+x4^4
Cho bốn số x1, x2, x3, x4 khác 0 thỏa mãn x22 = x1.x3 ; x23 = x2.x4 Chứng minh rằng: x1/ x4 = (x1 x2 x3 / x2 x3 x4 ) ^3