1: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{1}=\dfrac{y}{6}=\dfrac{z}{3}=\dfrac{2x-3y+4z}{2\cdot1-3\cdot6+4\cdot3}=\dfrac{24}{-4}=-6\)
Do đó: x=-6; y=-36; z=-18
2: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{1.1}=\dfrac{y}{1.3}=\dfrac{z}{1.4}=\dfrac{2x-y}{2\cdot1.1-1.3}=\dfrac{5.5}{0.9}=\dfrac{55}{9}\)
Do đó: x=121/18; y=143/18; z=77/9
3: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{20}=\dfrac{y}{15}=\dfrac{z}{9}=\dfrac{x-y-z}{20-15-9}=\dfrac{-100}{-5}=20\)
Do đó: x=400; y=300; z=180
4: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{1}{6}}=\dfrac{y}{\dfrac{1}{10}}=\dfrac{z}{\dfrac{1}{15}}=\dfrac{x+y-z}{\dfrac{1}{6}+\dfrac{1}{10}-\dfrac{1}{15}}=\dfrac{90}{\dfrac{1}{5}}=450\)
Do đó: x=75; y=45; z=30