\(bpt\Leftrightarrow x^2+x-2>x^2-2x+1+3\\ \Leftrightarrow3x>6\\ \Leftrightarrow x>2\)
Vậy ....
Ta có: \(\left(x-1\right)\left(x+2\right)>\left(x-1\right)^2+3\)
\(\Leftrightarrow x^2+x-2-x^2+2x-1-3>0\)
\(\Leftrightarrow3x-6>0\)
hay x>2
Vậy: S={x|x>2}
Tuyển Cộng tác viên Hoc24 nhiệm kì 28 tại đây: https://forms.gle/GrfwFgzveoKLVv3p6
\(bpt\Leftrightarrow x^2+x-2>x^2-2x+1+3\\ \Leftrightarrow3x>6\\ \Leftrightarrow x>2\)
Vậy ....
Ta có: \(\left(x-1\right)\left(x+2\right)>\left(x-1\right)^2+3\)
\(\Leftrightarrow x^2+x-2-x^2+2x-1-3>0\)
\(\Leftrightarrow3x-6>0\)
hay x>2
Vậy: S={x|x>2}
d) \(^{ }4x\left(2x+3\right)-8x\left(x+4\right)\)
e) \(^{ }2x\left(5x+2\right)+\left(2x-3\right)\left(3x-1\right)\)
f) \(^{ }x\left(x+2\right)^2-\left(x+1\right)^3+3\left(x-1\right)\left(x+1\right)\)
Rút gọn biểu thức:
a) \(A=\left(x-y\right)^3+\left(y+x\right)^3+\left(y-x\right)^3-3xy\left(x+y\right)\)
b) \(B=3x^2\left(x+1\right)\left(x-1\right)-\left(x^2-1\right)\left(x^4+x^2+1\right)+\left(x^2-1\right)^3\)
c) \(C=\left(x+y\right)\left(x^2-xy+y^2\right)+\left(x-y\right)\left(x^2+xy+y^2\right)-2x^3\)
d) \(D=\left(x+1\right)^3+\left(x-1\right)^3+x^3-3x\left(x+1\right)\left(x-1\right)\)
\(\left(x+4\right)^2-\left(x+1\right)\left(x-1\right)=16\)
\(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)
\(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)\(\left(x+3\right)^3-x\left(3x+1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)=28\)
a) \(^{ }\left(7x+4\right)^2-\left(7x-4\right)\left(7x+4\right)\)
b) \(^{ }8\left(x-2\right)-3\left(x^2-4x-5\right)-5x^2\)
c) \(^{^{ }}\left(x+1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3x\left(x+1\right)\)
Tìm \(x\):
\(8\)) \(1-\left(x-6\right)=4\left(2-2x\right)\)
\(9\))\(\left(3x-2\right)\left(x+5\right)=0\)
\(10\))\(\left(x+3\right)\left(x^2+2\right)=0\)
\(11\))\(\left(5x-1\right)\left(x^2-9\right)=0\)
\(12\))\(x\left(x-3\right)+3\left(x-3\right)=0\)
\(13\))\(x\left(x-5\right)-4x+20=0\)
\(14\))\(x^2+4x-5=0\)
Bài 1 : dùng hẳng đẳng thức để khai triển và thu gọn
a) \(\left(2x^2+\frac{1}{3}\right)^3\)
b) \(\left(2x^2y-3xy\right)^3\)
c) \(\left(-3xy^4+\frac{1}{2}x^2y^2\right)^3\)
d) \(\left(-\frac{1}{3}ab^2-2a^3b\right)^3\)
e) \(\left(x+1\right)^3-\left(x-1\right)^3-6.\left(x-1\right).\left(x+1\right)\)
f) \(x.\left(x-1\right).\left(x+1\right)-\left(x+1\right).\left(x^2-x+1\right)\)
g) \(\left(x-1\right)^3-\left(x+2\right).\left(x^2-2x+4\right)+3.\left(x-4\right).\left(x+4\right)\)
h) \(3x^2.\left(x+1\right).\left(x-1\right)+\left(x^2-1\right)^3-\left(x^2-1\right).\left(x^4+x^2+1\right)\)
k) \(\left(x^4-3x^2+9\right).\left(x^2+3\right)+\left(3-x^2\right)^3-9x^2.\left(x^2-3\right)\)
l) \(\left(4x+6y\right).\left(4x^2-6xy+9y^2\right)-54y^3\)
BT3: Tìm x
\(a,\left(x+2\right)^2-9=0\)
\(b,x^2-2x+1=25\)
\(c,\left(5x+1\right)^2-\left(5x-3\right)\left(5x+3\right)=30\)
\(d,\left(x-1\right)\left(x^2+x+1\right)+x\left(x+2\right)\left(2-x\right)=5\)
TÌM X,BIẾT:
a/\(\left(5x+1^{ }\right)^2-\left(5x-3\right)\left(5x+3\right)=30\)
b/\(\left(x-1\right)\left(x^2+x+1\right)+x\left(x+2\right)\left(2-x\right)=5\)
Câu 1: Rút gọn các biểu thức sau:
1. \(\left(x+y-z\right)^2+\left(y-z\right)^2+2z\left(z-y\right)\)
2. \(\left(3x+4\right)^2+\left(x-4\right)^2+2\left(3x+4\right)\left(x-4\right)\)
3.\(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
4. \(2x\left(2x-1\right)^2-3x\left(x+3\right)\left(x-3\right)-4x\left(x+1\right)\)
5. \(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
Câu 2: Tìm x
1. \(4\left(x+1\right)^2+\left(2x-1\right)^2-8\left(x-1\right)\left(x+1\right)=1\)
2. \(\left(3x+1\right)^2+\left(5x-2\right)^2=34\left(x+2\right)\left(x-2\right)\)
3. \(\left(x+3\right)^2+\left(x-2\right)^2=2x^2\)
4. \(4x^2-9-x\left(2x-3\right)=0\)
5. \(4x^2-12x+9=0\)
Câu 3: Tìm GTNN
D = \(\left(2x-1\right)^2+\left(x+2\right)^2\)
Câu 4: Cho \(a^2+b^2+c^2=ab+bc+ac\) . Chứng minh rằng a=b=c
1) \(\left(3-x^2\right)+6-2x=0\)
2) \(5\left(2x-1\right)+7=4\left(2-x\right)+2\)
3) \(x^2-6x+4\left(x-6\right)=0\)
4) \(\left(x+1\right)\left(2x-3\right)=x\left(x+1\right)\)