\(x=\frac{5\sqrt{3}-7}{2};y=-\frac{\sqrt{27}-1}{2}\)
\(x=\frac{5\sqrt{3}-7}{2};y=-\frac{\sqrt{27}-1}{2}\)
Giúp mình với ạ . Cảm ơn nhiều .
1)Giải hệ phương trình : \(\left\{{}\begin{matrix}\sqrt{2x-3}-\sqrt{y}\text{=}2x-6\\x^3+y^3+7xy\left(x+y\right)\text{=}8xy.\sqrt{2\left(x^2+y^2\right)}\end{matrix}\right.\)
2) Giải phương trình : \(\dfrac{2\sqrt{x}}{x-1}.x+6+\sqrt{x+2}\text{=}\sqrt{2-x}+3\sqrt{4-x^2}\)
Cả nhà giải giúp e 3 câu hệ pt này với
tks mn nhiều ạ
1.
\(\left(y+1\right)\sqrt{x^2+3}=4+\left(x+y\right)\left(y-1\right)\)
\(y+\sqrt{\left(x-1\right)^2+y\left(y-2x\right)}\) =\(1+3^{x-1}\) +\(\sqrt{x^2+3}\)
2
\(\sqrt{x+2}\)+\(\sqrt{x^2+y^2-xy\left(x-y\right)}\) =\(2+\sqrt{y+4}\)
\(\sqrt{1-y}\) +\(\sqrt{x+2}\) =\(x^2\left(y-1\right)+4x-3\)
3
\(\left(x^2+9\right)\sqrt{x^2+3}-x^2-2=\left(y+3\right)\sqrt{y-1}-\frac{\left(y-2\right)^2}{y+2\sqrt{\left(y-1\right)}}\)
\(xy+21=9x+3y+\sqrt{\left(7x-5\right)}\)
giải hệ pt \(\int^{x+y+xy=5}_{\left(x+1\right)^3+\left(y+1\right)^3=35}\)
giải pt \(\sqrt{\left(3+2\sqrt{2}\right)^x}+\sqrt{\left(3-2\sqrt{2}\right)^x}=6\)
\(\hept{\begin{cases}\left(x+y\right)^2-\left(x+y\right)\sqrt{3}-xy=-1\\x^2+y^2+x+2y=\sqrt{3}+\frac{2}{3}\end{cases}}\)
Giúp mình giải he pt này với
giải hệ pt
c)\(\left\{{}\begin{matrix}3\sqrt{x-1}+2\sqrt{y}=13\\2\sqrt{x-1}-\sqrt{y}=4\end{matrix}\right.\)
d)\(\left\{{}\begin{matrix}\left(x-1\right)+\left(y+2\right)=2\\4\left(x-1\right)+3\left(y+2\right)=7\end{matrix}\right.\)
giải pt
\(\frac{2\left(x-\sqrt{2}\right)\left(x-\sqrt{3}\right)}{\left(1-\sqrt{2}\right)\left(1-\sqrt{3}\right)}+\frac{3\left(x-1\right)\left(x-\sqrt{3}\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}-\sqrt{3}\right)}+\frac{4\left(x-1\right)\left(x-\sqrt{2}\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}-2\right)}\)=3x-1
\(\left\{{}\begin{matrix}\sqrt{3x}.\left(1+\dfrac{1}{x+y}\right)=2\\\sqrt{7y}.\left(1-\dfrac{1}{x-y}\right)=4\sqrt{2}\end{matrix}\right.\)
Giải hệ pt
\(\hept{\begin{cases}\left(x-2\right)\left(y+3\right)=5+xy\\x\left(y-3\right)=xy\end{cases}}\)
\(\hept{\begin{cases}\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}=4\\\frac{1}{\sqrt{x}}+\frac{2}{\sqrt{y}}=6\end{cases}}\)
GIải giúp mình 2 hệ này với :<
Giải hệ PT:
\(\hept{\begin{cases}x^2+4y-13+\left(x-3\right)\sqrt{x^2+y-4}=0\\\left(x+y-3\right)\sqrt{y}+\left(y-1\right)\sqrt{x+y+1}=x+3y-5\end{cases}}\)